【題目】函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點A,PD⊥y軸于點D,交y=的圖象于點B.下面結(jié)論:
①PA與PB始終相等;②△OBP與△OAP的面積始終相等;
③四邊形PAOB的面積不變;④PABD=PBAC.
其中一定正確的是_____(把你認為正確結(jié)論的序號都填上)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù) y=nx+2(n≠0)的圖像與反比例函數(shù) y (m≠0)在第一象限內(nèi)的圖像交于點 A,與 x 軸交于點 B,線段 OA=5,C 為 x 軸正半軸上一點,且 sin AOC .
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ AOB 的面積;
(3)請直接寫出不等式 nx 2 的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生學(xué)習(xí)的環(huán)境(教室),研究人員對某校一間(坐滿學(xué)生、門窗關(guān)閉)教室中的的總量進行檢測,得到的部分數(shù)據(jù)如下:
教室連續(xù)使用時間 |
|
|
|
|
|
總量 |
|
|
|
|
|
經(jīng)研究發(fā)現(xiàn),該教室空氣中總量是教室連使用時間的一次函數(shù).
(1)請直接寫出與的函數(shù)關(guān)系式;
(2)根據(jù)有關(guān)資料推算,當(dāng)該教室空氣中總量達到時,學(xué)生將會稍感不適,則該教室連續(xù)使用__________學(xué)生將會開始稍感不適.
(3)如果該教室在連續(xù)使用分鐘時開門通風(fēng),在學(xué)生全部離開教室的情況下,分鐘可將教室空氣中的總量減少到 ,求開門通風(fēng)時教室空氣中平均每分鐘減少多少立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線交于點O,點E是邊AB上一動點,點F在邊BC上,且滿足OE⊥OF,在點E由A運動到B的過程中,以下結(jié)論正確的個數(shù)為( )
①線段OE的大小先變小后變大;②線段EF的大小先變大后變;③四邊形OEBF的面積先變大后變。
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AB邊上的一點,以BD為直徑作⊙O,⊙O與AC的公共點為E,連接DE并延長交BC的延長線于點F,BD=BF.
(1)試判斷AC與⊙O的位置關(guān)系并說明理由;
(2)若AB=12,BC=6,求⊙O的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BD平分∠ABC,BC的中垂線交BC于點E,交BD于點F,連接CF.若∠A=60°,∠ACF=42°,則∠ABC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象交于點A(﹣2,﹣5),C(5,n),交y軸于點B,交x軸于點D.
(1)求反比例函數(shù)和一次函數(shù)y1=kx+b的表達式;
(2)連接OA,OC,求△AOC的面積;
(3)根據(jù)圖象,直接寫出y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:Rt△ABC 中,AC=BC,∠ACB=90°,D 為 BC 邊中點,CF⊥AD 交 AD 于 E,交 AB 于 F,BE交 AC 于 G,連 DF,下列結(jié)論:①AC=AF,②CD+DF=AD,③∠ADC=∠BDF,④CE=BE,⑤∠ BED=45°,其中正確的有( )
A. 5 個B. 4 個C. 3 個D. 2 個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com