【題目】函數(shù)y=和y=在第一象限內(nèi)的圖象如圖,點P是y=的圖象上一動點,PC⊥x軸于點C,交y=的圖象于點A,PD⊥y軸于點D,交y=的圖象于點B.下面結(jié)論:

①PA與PB始終相等;②△OBP與△OAP的面積始終相等;

③四邊形PAOB的面積不變;④PABD=PBAC.

其中一定正確的是_____(把你認為正確結(jié)論的序號都填上)

【答案】②③④

【解析】

根據(jù)反比例函數(shù)的圖象和性質(zhì),特別是根據(jù)反比例函數(shù)k的幾何意義,對四個選項逐一進行分析,即可得出正確答案.

解:∵A、B是反比函數(shù)y=上的點,

∴S△OBD=S△OAC=,

∵點P在y=上,

∴S△PDO=S△POC=,

∴S△POB=S△POA=1,故②正確,

∵當(dāng)P的橫縱坐標(biāo)相等時PA=PB,故①錯誤;

∴S四邊形PAOB=S△PBO+S△POA=3,故③正確;

連接OP,

=3,

∴AC=PC,PA=PC,

=2,

同理可得=2,

=,即PABD=PBAC故④正確.

故答案為:②③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù) y=nx+2(n≠0)的圖像與反比例函數(shù) y (m≠0)在第一象限內(nèi)的圖像交于點 A,與 x 軸交于點 B,線段 OA=5,C x 軸正半軸上一點,且 sin AOC .

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)AOB 的面積;

(3)請直接寫出不等式 nx 2 的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)生學(xué)習(xí)的環(huán)境(教室),研究人員對某校一間(坐滿學(xué)生、門窗關(guān)閉)教室中的的總量進行檢測,得到的部分數(shù)據(jù)如下:

教室連續(xù)使用時間

總量

經(jīng)研究發(fā)現(xiàn),該教室空氣中總量是教室連使用時間的一次函數(shù).

1)請直接寫出的函數(shù)關(guān)系式;

2)根據(jù)有關(guān)資料推算,當(dāng)該教室空氣中總量達到時,學(xué)生將會稍感不適,則該教室連續(xù)使用__________學(xué)生將會開始稍感不適.

3)如果該教室在連續(xù)使用分鐘時開門通風(fēng),在學(xué)生全部離開教室的情況下,分鐘可將教室空氣中的總量減少到 ,求開門通風(fēng)時教室空氣中平均每分鐘減少多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD的對角線交于點O,點E是邊AB上一動點,點F在邊BC上,且滿足OEOF,在點EA運動到B的過程中,以下結(jié)論正確的個數(shù)為(  )

線段OE的大小先變小后變大;線段EF的大小先變大后變;四邊形OEBF的面積先變大后變。

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個小正方形的邊長為1

1)直接寫出四邊形ABCD的面積和周長;

2)求證:∠BCD=90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,D是AB邊上的一點,以BD為直徑作⊙O,⊙O與AC的公共點為E,連接DE并延長交BC的延長線于點F,BD=BF.

(1)試判斷AC與⊙O的位置關(guān)系并說明理由;

(2)若AB=12,BC=6,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,BD平分∠ABC,BC的中垂線交BC于點E,交BD于點F,連接CF.若∠A60°,∠ACF42°,則∠ABC_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象交于點A2,5),C5,n),y軸于點B,x軸于點D

1)求反比例函數(shù)和一次函數(shù)y1=kx+b的表達式;

2)連接OA,OC,AOC的面積

3)根據(jù)圖象,直接寫出y1y2x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:RtABC 中,ACBC,∠ACB90°,D BC 邊中點,CFAD AD E,交 AB F,BE AC G,連 DF,下列結(jié)論:①ACAF,②CDDFAD,③∠ADC=∠BDF,④CEBE,⑤∠ BED45°,其中正確的有(

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

同步練習(xí)冊答案