【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(a≠0)的圖象在第一象限交于A、B兩點(diǎn),A點(diǎn)的坐標(biāo)為(m,4),B點(diǎn)的坐標(biāo)為(3,2),連接OA、OB,過(guò)B作BD⊥y軸,垂足為D,交OA于C.若OC=CA,
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)在直線BD上是否存在一點(diǎn)E,使得△AOE是直角三角形,求出所有可能的E點(diǎn)坐標(biāo).
【答案】(1)y=,y=﹣x+6;(2).(3)E坐標(biāo)為(﹣,2)或(,2)或(,2)或(,2).
【解析】
(1)先利用待定系數(shù)法求出反比例函數(shù)解析式,進(jìn)而確定出點(diǎn)A的坐標(biāo),再用待定系數(shù)法求出一次函數(shù)解析式;
(2)過(guò)點(diǎn)A作AF⊥x軸于F交OB于G,先求出OB的解析式,進(jìn)而求出AG,用三角形的面積公式即可得出結(jié)論.
(3)分三種情形分別討論求解即可解決問(wèn)題;
解:(1)∵點(diǎn)B(3,2)在反比例函數(shù)y=的圖象上,
∴a=3×2=6,
∴反比例函數(shù)的表達(dá)式為y=,
∵點(diǎn)A的縱坐標(biāo)為4,
∵點(diǎn)A在反比例函數(shù)y=圖象上,
∴A(,4),
∴,∴,
∴一次函數(shù)的表達(dá)式為y=﹣x+6;
(2)如圖1,過(guò)點(diǎn)A作AF⊥x軸于F交OB于G,
∵B(3,2),
∴直線OB的解析式為y=x,
∴G(,1),
A(,4),
∴AG=4﹣1=3,
∴S△AOB=S△AOG+S△ABG=×3×3=.
(3)如圖2中,
當(dāng)∠AOE1=90°時(shí),∵直線AC的解析式為y=x,
∴直線OE1的解析式為y=﹣x,
當(dāng)y=2時(shí),x=﹣,
∴E1(﹣,2).
當(dāng)∠OAE2=90°時(shí),
直線OE1平行直線OE2
設(shè)直線OE2的解析式為y=﹣x+b,
∴直線過(guò)點(diǎn)A(,4),則b=
∴直線OE2的解析式為y=﹣x+,
當(dāng)y=2時(shí),x=,
∴E2(,2).
當(dāng)∠OEA=90°時(shí),
∵A(,4),∴OA=
∴AC=OC=CE=,
∵C(,2),
∴可得E3(,2),E4(,2),
綜上所述,滿足條件的點(diǎn)E坐標(biāo)為(﹣,2)或(,2)或(,2)或(,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若拋物線頂點(diǎn)A的橫坐標(biāo)是,且與y軸交于點(diǎn),點(diǎn)P為拋物線上一點(diǎn).
求拋物線的表達(dá)式;
若將拋物線向下平移4個(gè)單位,點(diǎn)P平移后的對(duì)應(yīng)點(diǎn)為如果,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,的平分線交于點(diǎn),過(guò)點(diǎn)作交于點(diǎn),以為直徑作⊙.
(1)求證:是⊙的切線;
(2) 若AC=3,BC=4,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在元旦期間,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種商品.
(1)已知甲、乙兩種商品的進(jìn)價(jià)分別為30元,70元,該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品共50件需要2300元,則該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)該商場(chǎng)共投入9500元資金購(gòu)進(jìn)這兩種商品若干件,這兩種商品的進(jìn)價(jià)和售價(jià)如表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 30 | 70 |
售價(jià)(元/件) | 50 | 100 |
若全部銷售完后可獲利5000元(利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷量),則該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品各多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,E為AD的中點(diǎn),已知△DEF的面積為1,則平行四邊形ABCD的面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市實(shí)施產(chǎn)業(yè)精準(zhǔn)扶貧,幫助貧困戶承包荒山種植某品種蜜柚.已知該蜜柚的成本價(jià)為6元/千克,到了收獲季節(jié)投入市場(chǎng)銷售時(shí),調(diào)查市場(chǎng)行情后,發(fā)現(xiàn)該蜜柚不會(huì)虧本,且每天的銷售量y(千克)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)某村農(nóng)戶今年共采摘蜜柚12000千克,若該品種蜜柚的保質(zhì)期為50天,按照(2)的銷售方式,能否在保質(zhì)期內(nèi)全部銷售完這批蜜柚?若能,請(qǐng)說(shuō)明理由;若不能,應(yīng)定銷售價(jià)為多少元時(shí),既能銷售完又能獲得最大利潤(rùn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖像與邊長(zhǎng)是6的正方形 的兩邊分別相交于兩點(diǎn),的面積為10.若動(dòng)點(diǎn)在軸上,則的最小值是_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=6,點(diǎn)E為BC上一點(diǎn),將△ABE沿AE折疊得到△AEF,點(diǎn)H為CD上一點(diǎn),將△CEH沿EH折疊得到△EHG,且F落在線段EG上,當(dāng)GF=GH時(shí),則BE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l與x軸,y軸分別交于A,B兩點(diǎn),且與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)C,若S△AOB=S△BOC=1,則k=( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com