如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動點(diǎn)(端點(diǎn)除外),過點(diǎn)P作PD∥AC,交BC于點(diǎn)D,連接CP.

(1)求該拋物線的解析式;
(2)當(dāng)動點(diǎn)P運(yùn)動到何處時(shí),BP2=BD•BC;
(3)當(dāng)△PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).
(1);(2)(,0);(3)(1,0)

試題分析:(1)由拋物線y=ax2+bx﹣4過點(diǎn)A(4,0)、B(﹣2,0)根據(jù)待定系數(shù)法求解即可;
(2)設(shè)點(diǎn)P運(yùn)動到點(diǎn)(x,0)時(shí),有BP2=BD•BC,在中,令x=0時(shí),則y=﹣4,即可求得點(diǎn)C的坐標(biāo),由PD∥AC可得△BPD∽△BAC,再根據(jù)相似三角形的性質(zhì)求解即可;
(3)由△BPD∽△BAC,根據(jù)相似三角形的性質(zhì)及二次函數(shù)的性質(zhì)求解即可.
(1)∵拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點(diǎn)
,解得
∴拋物線的解析式為
(2)設(shè)點(diǎn)P運(yùn)動到點(diǎn)(x,0)時(shí),有BP2=BD•BC,
中,令x=0時(shí),則y=﹣4
∴點(diǎn)C的坐標(biāo)為(0,﹣4)
∵PD∥AC
∴△BPD∽△BAC

,AB=6,BP=x﹣(﹣2)=x+2
,即 
∵BP2=BD•BC,
,解得x1=,x2=﹣2(不合題意,舍去)
∴點(diǎn)P的坐標(biāo)是(,0)
∴當(dāng)點(diǎn)P運(yùn)動到(,0)時(shí),BP2=BD•BC;
(3)∵△BPD∽△BAC,


又∵,

<0,∴當(dāng)x=1時(shí),S△BPC有最大值為3
∴點(diǎn)P的坐標(biāo)為(1,0)時(shí),△PDC的面積最大。
點(diǎn)評:此類問題是初中數(shù)學(xué)的重點(diǎn)和難點(diǎn),在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,已知點(diǎn)B的坐標(biāo)為(3,0).

(1)求a的值和拋物線的頂點(diǎn)坐標(biāo);
(2)分別連接AC、BC.在x軸下方的拋物線上求一點(diǎn)M,使△AMC與△ABC的面積相等;
(3)設(shè)N是拋物線對稱軸上的一個(gè)動點(diǎn),d=|AN﹣CN|.探究:是否存在一點(diǎn)N,使d的值最大?若存在,請直接寫出點(diǎn)N的坐標(biāo)和d的最大值;若不存在,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A,B,與軸交于點(diǎn)C。過點(diǎn)C作CD∥x軸,交拋物線的對稱軸于點(diǎn)D,連結(jié)BD。已知點(diǎn)A坐標(biāo)為(-1,0)。

(1)求該拋物線的解析式;
(2)求梯形COBD的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過原點(diǎn)和點(diǎn)(-2,0),則2a-3b   0.(>、<或=)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙C的內(nèi)接△AOB中,AB=AO=4,tan∠AOB=,拋物線y=ax2+bx經(jīng)過點(diǎn)A(4,0)與點(diǎn)(-2,6).

(1)求拋物線的函數(shù)解析式;
(2)直線m與⊙C相切于點(diǎn)A交y軸于點(diǎn)D,動點(diǎn)P在線段OB上,從點(diǎn)O出發(fā)向點(diǎn)B運(yùn)動;同時(shí)動點(diǎn)Q在線段DA上,從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動,點(diǎn)P的速度為每秒1個(gè)單位長,點(diǎn)Q的速度為每秒2個(gè)單位長,當(dāng)PQ⊥AD時(shí),求運(yùn)動時(shí)間t的值;
(3)點(diǎn)R在拋物線位于x軸下方部分的圖象上,當(dāng)△ROB面積最大時(shí),求點(diǎn)R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=a(x﹣m)2+n與y軸交于點(diǎn)A,它的頂點(diǎn)為點(diǎn)B,點(diǎn)A、B關(guān)于原點(diǎn)O的對稱點(diǎn)分別為C、D.若A、B、C、D中任何三點(diǎn)都不在一直線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.

(1)如圖1,求拋物線y=(x﹣2)2+1的伴隨直線的表達(dá)式.
(2)如圖2,若拋物線y=a(x﹣m)2+n(m>0)的伴隨直線是y=x﹣3,伴隨四邊形的面積為12,求此拋物線的表達(dá)式.
(3)如圖3,若拋物線y=a(x﹣m)2+n的伴隨直線是y=﹣2x+b(b>0),且伴隨四邊形ABCD是矩形.用含b的代數(shù)式表示m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

企業(yè)的污水處理有兩種方式,一種是輸送到污水廠進(jìn)行集中處理,另一種是通過企業(yè)的自身設(shè)備進(jìn)行處理.某企業(yè)去年每月的污水量均為12000噸,由于污水廠處于調(diào)試階段,污水處理能力有限,該企業(yè)投資自建設(shè)備處理污水,兩種處理方式同時(shí)進(jìn)行.1至6月,該企業(yè)向污水廠輸送的污水量(噸)與月份,且取整數(shù))之間滿足的函數(shù)關(guān)系如下表:
月份(月)
1
2
3
4
5
6
輸送的污水量(噸)
12000
6000
4000
3000
2400
2000
7至12月,該企業(yè)自身處理的污水量(噸)與月份,且取整數(shù))之間滿足二次函數(shù)關(guān)系式,其圖象如圖所示.1至6月,污水廠處理每噸污水的費(fèi)用(元)與月份之間滿足函數(shù)關(guān)系式,該企業(yè)自身處理每噸污水的費(fèi)用(元)與月份之間滿足函數(shù)關(guān)系式;7至12月,污水廠處理每噸污水的費(fèi)用均為2元,該企業(yè)自身處理每噸污水的費(fèi)用均為1.5元.

(1)請觀察題中的表格和圖象,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,分別直接寫出,之間的函數(shù)關(guān)系式;
(2)設(shè)該企業(yè)去年第月用于污水處理的費(fèi)用為W(元),試求出W之間的函數(shù)關(guān)系式;
(3)請你求出該企業(yè)去年哪個(gè)月用于污水處理的費(fèi)用W(元)最多,并求出這個(gè)最多費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)P是直線上的點(diǎn),過點(diǎn)P的另一條直線交拋物線于A、B兩點(diǎn).

(1)若直線的解析式為,求A、B兩點(diǎn)的坐標(biāo);
(2)①若點(diǎn)P的坐標(biāo)為(-2,),當(dāng)PA=AB時(shí),請直接寫出點(diǎn)A的坐標(biāo);
②試證明:對于直線上任意給定的一點(diǎn)P,在拋物線上都能找到點(diǎn)A,使得PA=AB成立.
(3)設(shè)直線軸于點(diǎn)C,若△AOB的外心在邊AB上,且∠BPC=∠OCP,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請選擇一組你喜歡的a、b、c的值,使二次函數(shù)y=ax2+bx+c(a≠0)同時(shí)滿足下列條件:①開口向下;②當(dāng)x<-1時(shí),y隨x的增大而增大,當(dāng)x>-1時(shí),y隨x的增大而減小,這樣的函數(shù)關(guān)系式可以是     

查看答案和解析>>

同步練習(xí)冊答案