【題目】探究題:
(1)如圖1,兩條水平的直線被一條豎直的直線所截,同位角有__________對,內錯角有__________對,同旁內角有__________對;
(2)如圖2,三條水平的直線被一條豎直的直線所截,同位角有__________對,內錯角有__________對,同旁內角有__________對;
(3)根據(jù)以上探究的結果,n(n為大于1的整數(shù))條水平直線被一條豎直直線所截,同位角有__________對,內錯角有__________對,同旁內角有__________對.(用含n的式子表示)
科目:初中數(shù)學 來源: 題型:
【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。
根據(jù)以上信息,解答下列問題:
(1)設租車時間為 小時,租用甲公司的車所需費用為 元,租用乙公司的車所需費用為 元,分別求出 , 關于 的函數(shù)表達式;
(2)請你幫助小明計算并選擇哪個出游方案合算。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個正整數(shù)能表示為兩個連續(xù)奇數(shù)的平方差,那么稱這個正整數(shù)為“奇特數(shù)”.例如:
,,;則、、這三個數(shù)都是奇特數(shù).
(1)和這兩個數(shù)是奇特數(shù)嗎?若是,表示成兩個連續(xù)奇數(shù)的平方差形式.
(2)設兩個連續(xù)奇數(shù)是和(其中取正整數(shù)),由這兩個連續(xù)奇數(shù)構造的奇特數(shù)是的倍數(shù)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點,點P在AB上.
(1)試找出∠1,∠2,∠3之間的關系并說出理由;
(2)如果點P在A,B兩點之間運動,問∠1,∠2,∠3之間的關系是否發(fā)生變化?
(3)如果點P在A,B兩點外側運動,試探究∠1,∠2,∠3之間的關系(點P和A,B不重合).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖 1,四邊形 ABCD 中,∠BAD=∠ADC=∠CBA=90°,AB=AD,點 E、F 分別在四邊形 ABCD 的邊 BC、CD 上,∠EAF=45°,點 G 在 CD 的延長線上,BE=DG,連接 AG,求證:EF=BE+FD.
(2)如圖 2,四邊形 ABCD 中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點 E、F 分別在邊BC、CD 上,則當∠BAD=2∠EAF 時,仍有 EF=BE+FD 成立嗎?說明理由.
(3)如圖 3,四邊形 ABCD 中,∠BAD≠90°,AB=AD,AC 平分∠BCD,AE⊥BC 于 E,AF⊥CD 交 CD 延長線于 F,若 BC=9,CD=4,則 CE= .(不需證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,補充條件后仍不一定能保證△ABC≌△A′B′C′,則補充的這個條件是( )
A. BC=B′C′ B. ∠A=∠A′ C. AC=A′C′ D. ∠C=∠C′
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別為EB,CD的中點,易證:CD=BE,△AMN是等邊三角形:
(1)當把△ADE繞點A旋轉到圖2的位置時,CD=BE嗎?若相等請證明,若不等于請說明理由;
(2)當把△ADE繞點A旋轉到圖3的位置時,△AMN還是等邊三角形嗎?若是請證明,若不是,請說明理由(可用第一問結論).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中.
(1)把△ABC平移至點A′的位置,使點A與點A′對應,畫出平移后得到的△A′B′C′;
(2)△A′B′C′可以看成是把△ABC如何平移得到的?
(3)寫出圖中與線段AA′平行且相等的線段(可用字母表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,,,將邊沿翻折,使點 落在上的點處;再將邊沿翻折,使點落在的延長線上的點處,兩條折痕與斜邊分別交于點、,則線段的長為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com