【題目】如圖,大小不同的兩個磁塊,其截面都是等邊三角形,小三角形邊長是大三角形邊長的一半,點(diǎn)O是小三角形的內(nèi)心,現(xiàn)將小三角形沿著大三角形的邊緣順時針滾動,當(dāng)由①位置滾動到④位置時,線段OA繞點(diǎn)O順時針轉(zhuǎn)過的角度是( )
A.240°
B.360°
C.480°
D.540°
【答案】C
【解析】解:由題意可得:第一次AO順時針轉(zhuǎn)動了120°,第二次AO順時針轉(zhuǎn)動了240°,第三次AO順時針轉(zhuǎn)動了120°, 故當(dāng)由①位置滾動到④位置時,線段OA繞點(diǎn)O順時針轉(zhuǎn)過的角度是:120°+240°+120°=480°.
故選:C.
【考點(diǎn)精析】通過靈活運(yùn)用等邊三角形的性質(zhì)和三角形的內(nèi)切圓與內(nèi)心,掌握等邊三角形的三個角都相等并且每個角都是60°;三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點(diǎn),它叫做三角形的內(nèi)心即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,過點(diǎn)D作DE⊥AD交AB于點(diǎn)E,以AE為直徑作⊙O.
(1)求證:BC是⊙O的切線;
(2)若AC=3,BC=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于點(diǎn)E,過點(diǎn)C作CF∥AE,交AD于點(diǎn)F,則四邊形AECF的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一張矩形紙片ABCD(如圖),其中AB=4cm,BC=6cm,點(diǎn)E是BC的中點(diǎn).將紙片沿直線AE折疊,點(diǎn)B落在四邊形AECD內(nèi),記為點(diǎn)B′.則線段B′C= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:y=ax2+bx+c(a>0)經(jīng)過A(﹣1,1),B(2,4)兩點(diǎn),頂點(diǎn)坐標(biāo)為(m,n),有下列結(jié)論: ①b<1;②c<2;③0<m< ;④n≤1.
則所有正確結(jié)論的序號是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是上半圓的弦,過點(diǎn)C作⊙O的切線DE交AB的延長線于點(diǎn)E,過點(diǎn)A作切線DE的垂線,垂足為D,且與⊙O交于點(diǎn)F,設(shè)∠DAC,∠CEA的度數(shù)分別是α,β.
(1)用含α的代數(shù)式表示β,并直接寫出α的取值范圍;
(2)連接OF與AC交于點(diǎn)O′,當(dāng)點(diǎn)O′是AC的中點(diǎn)時,求α,β的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為,點(diǎn)P為對角線BD上一動點(diǎn),點(diǎn)E在射線BC上,
(1)填空:BD=______;
(2)若BE=t,連結(jié)PE、PC,求PE+PC的最小值(用含t的代數(shù)式表示);
(3)若點(diǎn)E是直線AP與射線BC的交點(diǎn),當(dāng)△PCE為等腰三角形時,求∠PEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com