【題目】如圖,正方形ABCD的邊長(zhǎng)為,點(diǎn)P為對(duì)角線BD上一動(dòng)點(diǎn),點(diǎn)E在射線BC上,

(1)填空:BD=______;

(2)BE=t,連結(jié)PE、PC,求PE+PC的最小值(用含t的代數(shù)式表示);

(3)若點(diǎn)E是直線AP與射線BC的交點(diǎn),當(dāng)PCE為等腰三角形時(shí),求∠PEC的度數(shù).

【答案】(1)BD=2 (2) (3)120° 30°

【解析】.

(1)根據(jù)勾股定理計(jì)算即可

(2)連接AP,當(dāng)APPE在一條線上時(shí),PE+PC最小,利用勾股定理求出最小值;

(3)分兩種情況考慮:當(dāng)EBC延長(zhǎng)線上時(shí),如圖2所示,PCE為等腰三角形,則CP=CE;②當(dāng)EBC上,如圖3所示,PCE是等腰三角形,則PE=CE,分別求出PEC的度數(shù)即可.

1)BD==2 ;

(2)如圖1所示:當(dāng)APPE在一條線上時(shí),PE+PC最小,

AB=,BE=t,

PE+PC的最小值為

(3)分兩種情況考慮:

①當(dāng)點(diǎn)EBC的延長(zhǎng)線上時(shí),

如圖2所示,PCE是等腰三角形,則CP=CE,

∴∠CPE=CEP,

∴∠BCP=CPE+CEP=2CEP,

∵在正方形ABCD中,∠ABC=90°,

∴∠PBA=PBC=45°,

ABPCBP中,

,

∴△ABP≌△CBP(SAS),

∴∠BAP=BCP=2CEP,

∵∠BAP+PEC=90°,

2PEC+PEC=90°,

∴∠PEC=30°;

②當(dāng)點(diǎn)EBC上時(shí),

如圖3所示,PCE是等腰三角形,則PE=CE,

∴∠CPE=PCE,

∴∠BEP=CPE+PCE=2ECP,

∵四邊形ABCD是正方形,

∴∠PBA=PBC=45°,

AB=BC,BP=BP,

∴△ABP≌△CBP,

∴∠BAP=BCP,

∵∠BAP+AEB=90°,

2BCP+BCP=90°,

∴∠BCP=30°,

∴∠AEB=60°,

∴∠PEC=180°-AEB=120° .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一副直角三角尺的直角頂點(diǎn)C疊放在一起.

(1)如圖 1,若 CE 恰好是∠ACD 的角平分線,請(qǐng)你猜想此時(shí) CD 是不是∠ECB 的角平分線?只回答出“是”或“不是”即可;

(2)如圖 2,若∠ECD=α,CD 在∠BCE 的內(nèi)部,請(qǐng)你猜想∠ACE 與∠DCB是否相等?并簡(jiǎn)述理由;

(3)在(2)的條件下,請(qǐng)問(wèn)∠ECD 與∠ACB 的和是多少?并簡(jiǎn)述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大小不同的兩個(gè)磁塊,其截面都是等邊三角形,小三角形邊長(zhǎng)是大三角形邊長(zhǎng)的一半,點(diǎn)O是小三角形的內(nèi)心,現(xiàn)將小三角形沿著大三角形的邊緣順時(shí)針滾動(dòng),當(dāng)由①位置滾動(dòng)到④位置時(shí),線段OA繞點(diǎn)O順時(shí)針轉(zhuǎn)過(guò)的角度是(
A.240°
B.360°
C.480°
D.540°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=k1x+5(k1<0)的圖象與坐標(biāo)軸交于A,B兩點(diǎn),與反比例函數(shù)y= (k2>0)的圖象交于M,N兩點(diǎn),過(guò)點(diǎn)M作MC⊥y軸于點(diǎn)C,已知CM=1.

(1)求k2﹣k1的值;
(2)若 = ,求反比例函數(shù)的解析式;
(3)在(2)的條件下,設(shè)點(diǎn)P是x軸(除原點(diǎn)O外)上一點(diǎn),將線段CP繞點(diǎn)P按順時(shí)針或逆時(shí)針旋轉(zhuǎn)90°得到線段PQ,當(dāng)點(diǎn)P滑動(dòng)時(shí),點(diǎn)Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點(diǎn)Q的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x+bb0)與坐標(biāo)軸交于A,B兩點(diǎn),與雙曲線x0)交于D點(diǎn),過(guò)點(diǎn)DDCx軸,垂足為G,連接OD.已知AOB≌△ACD

1)如果b=﹣2,求k的值;

2)試探究kb的數(shù)量關(guān)系,并寫(xiě)出直線OD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為2的菱形ABCD中,∠B=45°,AEBC邊上的高,將ABE沿AE所在直線翻折得ABE,ABCD邊交于點(diǎn)F,則BF的長(zhǎng)度為(

A. 1 B. C. 2-2 D. 2-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家電銷(xiāo)售商場(chǎng)電冰箱的銷(xiāo)售價(jià)為每臺(tái)2100元,空調(diào)的銷(xiāo)售價(jià)為每臺(tái)1750元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商場(chǎng)用80000元購(gòu)進(jìn)電冰箱的數(shù)量與用64000元購(gòu)進(jìn)空調(diào)的數(shù)量相等.
(1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?
(2)現(xiàn)在商場(chǎng)準(zhǔn)備一次購(gòu)進(jìn)這兩種家電共100臺(tái),設(shè)購(gòu)進(jìn)電冰箱x臺(tái),這100臺(tái)家電的銷(xiāo)售總利潤(rùn)為y元,要求購(gòu)進(jìn)空調(diào)數(shù)量不超過(guò)電冰箱數(shù)量的2倍,總利潤(rùn)不低于13200元,請(qǐng)分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題8分)如圖,某住宅小區(qū)在施工過(guò)程中留下了一塊空地,已知AD=4米,CD=3米,ADC=90°,AB=13米,BC=12米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問(wèn)用該草坪鋪滿這塊空地共需花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】α為銳角,且關(guān)于x的一元二次方程 有兩個(gè)相等的實(shí)數(shù)根,則α=(
A.30°
B.45°
C.30°或150°
D.60°

查看答案和解析>>

同步練習(xí)冊(cè)答案