【題目】某超市為了答謝顧客,凡在本超市購物的顧客,均可憑購物小票參與抽獎活動,獎品是三種瓶裝飲料,它們分別是:綠茶、紅茶和可樂,抽獎規(guī)則如下:①如圖是一個材質(zhì)均勻可自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被等分成五個扇形區(qū)域,每個區(qū)域上分別寫有“可”、“綠”、“樂”、“茶”、“紅”字樣;②參與一次抽獎活動的顧客可進行兩次“有效隨機轉(zhuǎn)動”(當轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,可獲得指針所指區(qū)域的字樣,我們稱這次轉(zhuǎn)動為一次“有效隨機轉(zhuǎn)動”);③假設(shè)顧客轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,指針指向兩區(qū)域的邊界,顧客可以再轉(zhuǎn)動轉(zhuǎn)盤,直到轉(zhuǎn)動為一次“有效隨機轉(zhuǎn)動”;④當顧客完成一次抽獎活動后,記下兩次指針所指區(qū)域的兩個字,只要這兩個字的組合和獎品名稱相同(與字的順序無關(guān)),便可獲得相應(yīng)獎品一瓶;不相同時,不能獲得任何獎品.

根據(jù)以上規(guī)則,回答下列問題:

(1)求一次“有效隨機轉(zhuǎn)動”可獲得“樂”字的概率.

(2)有一名顧客憑本超市的購物小票,參與了一次抽獎活動,請你用列表或畫樹狀圖的方法,求該顧客經(jīng)過兩次“有效隨機轉(zhuǎn)動”后,獲得一瓶可樂的概率.

【答案】(1;(2

【解析】試題分析:(1)由轉(zhuǎn)盤被等分成五個扇形區(qū)域,每個區(qū)域上分別寫有、、字樣;直接利用概率公式求解即可求得答案;

2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與該顧客經(jīng)過兩次有效隨機轉(zhuǎn)動后,獲得一瓶可樂的情況,再利用概率公式求解即可求得答案.

試題解析:(1轉(zhuǎn)盤被等分成五個扇形區(qū)域,每個區(qū)域上分別寫有、、字樣;一次有效隨機轉(zhuǎn)動可獲得字的概率為: ;

2)畫樹狀圖得:

共有25種等可能的結(jié)果,該顧客經(jīng)過兩次有效隨機轉(zhuǎn)動后,獲得一瓶可樂的有2種情況,該顧客經(jīng)過兩次有效隨機轉(zhuǎn)動后,獲得一瓶可樂的概率為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在數(shù)軸上A點表示數(shù)a,B點表示數(shù)b,且a、b滿足|2a+6|+|b﹣9|=0

(1)點A表示的數(shù)為   ,點B表示的數(shù)為   ;

(2)若點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC,請在點A、點B之間的數(shù)軸上找一點C,使BC=2AC,則C點表示的數(shù)為   ;

(3)在(2)的條件下,若一動點P從點A出發(fā),以3個單位長度/秒速度由A向B運動;同一時刻,另一動點Q從點C出發(fā),以1個單位長度/秒速度由C向B運動,終點都為B點.當一點到達終點時,這點就停止運動,而另一點則繼續(xù)運動,直至兩點都到達終點時才結(jié)束整個運動過程.設(shè)點Q運動時間為t秒.

請用含t的代數(shù)式表示:點P到點A的距離PA=   ,點Q到點B的距離QB=   ;點P與點Q之間的距離 PQ=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:m+n=5,mn=4,則:m2n+mn2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,若將矩形折疊,使C點與A點重合,則EF(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市長途客運站每天6:30—7:30開往某縣的三輛班車票價相同,但車的舒適程度不同.小張和小王因事需在這一時段乘車去該縣,但不知道三輛車開來的順序,兩人采用不同的乘車方案:小張無論如何決定乘坐開來的第一輛車,而小王則是先觀察后上車,當?shù)谝惠v車開來時,他不上車,而是仔細觀察車的舒適狀況.若第二輛車的狀況比第一輛車好,他就上第二輛車;若第二輛車不如第一輛車,他就上第三輛車.若按這三輛車的舒適程度分為優(yōu)、中、差三等,請你思考并回答下列問題:

(1)三輛車按出現(xiàn)的先后順序共有哪幾種可能?

(2)請列表分析哪種方案乘坐優(yōu)等車的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC的頂點AB、C在小正方形的頂點上,將△ABC向下平移4個單位、再向右平移3個單位得到△A1B1C1

1)在網(wǎng)格中畫出△A1B1C1

2)計算線段AC在變換到A1C1的過程中掃過區(qū)域的面積(重疊部分不重復(fù)計算).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)林業(yè)局要考察一種樹苗移植的成活率,對該地區(qū)這種樹苗移植成活的情況進行調(diào)查統(tǒng)計,并繪制了如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息解決下列問題:

(1)這種樹苗成活的頻率穩(wěn)定在___________,成活的概率估計值為___________.

(2)該地區(qū)已經(jīng)移植這種樹苗5萬棵.

①估計這種樹苗成活___________萬棵.

②如果該地區(qū)計劃成活18萬棵這種樹苗,那么還需移植這種樹苗約多少萬棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,P是對角線BD上的一點,點E在AD的延長線上,且PA=PE,PE交CD于F.
(1)證明:PC=PE;
(2)求∠CPE的度數(shù);
(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當∠ABC=116°時,則∠EPC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,推理填空:

(1)∵∠1=_______(已知),

∴AC∥ED(同位角相等,兩直線平行).

(2)∵∠2=______(已知),

∴AB∥FD(內(nèi)錯角相等,兩直線平行).

(3)∵∠2+_______=180°(已知),

∴AC∥ED(同旁內(nèi)角互補,兩直線平行).

查看答案和解析>>

同步練習(xí)冊答案