【題目】騰飛中學(xué)在教學(xué)樓前新建了一座“騰飛”雕塑(如圖11①).為了測量雕塑的高度,小明在二樓找到一點(diǎn)C,利用三角板測得雕塑頂端A點(diǎn)的仰角為30°,底部B點(diǎn)的俯角為45°,小華在五樓找到一點(diǎn)D,利用三角板測得A點(diǎn)的俯角為60°(如圖10②).若已知CD為10米,請求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)=1.73)
【答案】雕塑AB的高度約為6.8米
【解析】
過點(diǎn)C作CE⊥AB于E,根據(jù)題目已知條件可以求出AC=5,利用解直角三角形可以求出AE和CE的長度,從而進(jìn)一步求出BE,即可求得AB=AE+BE.
解:如圖,過點(diǎn)C作CE⊥AB于E.
∵∠D=90°-60°=30°,∠ACD=90°-30°=60°,
∴∠CAD=90°.
∵CD=10,∴AC=CD=5.
在Rt△ACE中,
AE=ACsin∠ACE=5sin30°=,
CE=ACcos∠ACE=5cos30°=.
在Rt△BCE中,
∵∠BCE=45°,
∴BE=CEtan45°=,
∴AB=AE+BE=+=(+1)≈6.8(米).所以,雕塑AB的高度約為6.8米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“停課不停學(xué)”期間,某校數(shù)學(xué)興趣小組對本校同學(xué)觀看教學(xué)視頻所使用的工具進(jìn)行了調(diào)查,并從中隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行分析,將分析結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)表與統(tǒng)計(jì)圖.
工具 | 人數(shù) | 頻率 |
手機(jī) | 44 | a |
平板 | b | 0.2 |
電腦 | 80 | c |
電視 | 20 | d |
不確定 | 16 | 0.08 |
請根據(jù)上述信息回答下列問題:
(1)所抽取出來的同學(xué)共 人,表中a= ,b= ;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校觀看教學(xué)視頻的學(xué)生總?cè)藬?shù)為2500人,則使用電腦的學(xué)生人數(shù)約 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是原點(diǎn),矩形OABC的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)C在y的正半軸上,點(diǎn)B的坐標(biāo)是(5,3),拋物線經(jīng)過A、C兩點(diǎn),與x軸的另一個(gè)交點(diǎn)是點(diǎn)D,連接BD.
(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對稱軸上的一點(diǎn),以M、B、D為頂點(diǎn)的三角形的面積是6,求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),以每秒1個(gè)單位長度的速度沿D→B勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長度的速度沿B→A→D勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以D、P、Q為頂點(diǎn)的三角形是等腰三角形?請直接寫出所有符合條件的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.
(1)求拋物線的表達(dá)式;
(2)設(shè)拋物線的對稱軸為l,l與x軸的交點(diǎn)為D.在直線l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.求S關(guān)于t的函數(shù)表達(dá)式;并求S最大時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線L:y=mx2+nx-6經(jīng)過點(diǎn)(-2,2),與x軸相交于A(-3,0)和B兩點(diǎn),并與y軸相交于點(diǎn)C.拋物線L′與L關(guān)于坐標(biāo)原點(diǎn)對稱,點(diǎn)A,B在L′上的對應(yīng)點(diǎn)分別為A′和B′.
(1)求拋物線L的函數(shù)表達(dá)式.
(2)在拋物線L′上是否存在點(diǎn)P,使得△PA′A的面積等于△CB′B的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,.
(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母;(保留作圖痕跡,不寫作法)
①以為邊在上方外作等邊三角形;
②作的中線;
(2)計(jì)算:的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、D在反比例函數(shù)的圖像上,點(diǎn)B、C在反比例函數(shù)的圖像上,若AB∥CD∥軸,∥軸,且,,,則=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A1在直線l1:y=x上,過點(diǎn)A1作x軸的平行線交直線l2:y=x于點(diǎn)B1,
過點(diǎn)B1作l2的垂線交l1于點(diǎn)A2,過點(diǎn)A2作x軸的平行線交直線l2于點(diǎn)B2,過點(diǎn)B2作l2的垂線交l1于點(diǎn)A3,過點(diǎn)A3作x軸的平行線交直線l2于點(diǎn)B3,……,過點(diǎn)B1,B2,B3,……,分別作l1的平行線交A2B2于點(diǎn)C1,交A3B3于點(diǎn)C2,交A4B4于點(diǎn)C3,……,按此規(guī)律繼續(xù)下去,若OA1=1,則點(diǎn)的坐標(biāo)為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,,,以點(diǎn)A為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為,得到矩形AEFG,點(diǎn)B、點(diǎn)C、點(diǎn)D的對應(yīng)點(diǎn)分別為點(diǎn)E、點(diǎn)F、點(diǎn)G.
如圖,當(dāng)點(diǎn)E落在DC邊上時(shí),直寫出線段EC的長度為______;
如圖,當(dāng)點(diǎn)E落在線段CF上時(shí),AE與DC相交于點(diǎn)H,連接AC,
求證:≌;
直接寫出線段DH的長度為______.
如圖設(shè)點(diǎn)P為邊FG的中點(diǎn),連接PB,PE,在矩形ABCD旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個(gè)最大值;若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com