【題目】已知在△ABC中,以AC為邊在△ABC外作等邊△ACD,BC=,AD=,tan∠ACB=,則線段BD的長為_______.
【答案】
【解析】
作AF⊥BC,根據(jù)tan∠ACB=,AC=可求出AF的長=3,FC=2,故BF=3,根據(jù)勾股定理知∠ABF=30°,以AB為邊在△ABC外作等邊△ABE,連接EC.易證△ABD≌△AEC,則BD=EC,∠EBA=60°,則EB⊥BC,則利用勾股定理即可求出EC,即求出BD的長.
作AF⊥BC,
∵AC=,設(shè)AF=x,FC=2x,根據(jù)tan∠ACB=,求得x=
∴AF =3,FC=2,
∴BF=BC-FC=3,
∵AF =3,BF=3,可得∠ABF=30°,
∴AB=6
以AB為邊在△ABC外作等邊△ABE,連接EC.
證得△ABD≌△AEC,
∴BD=EC,
∵∠EBA=60°,∠ABF=30°,
∴EB⊥BC,
∴EC=
∴BD=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,若AF=4,AB=7.
(1)求DE的長度;
(2)試猜想:直線BE與DF有何位置關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=7.5,AC=9,S△ABC=.動點P從A點出發(fā),沿AB方向以每秒5個單位長度的速度向B點勻速運動,動點Q從C點同時出發(fā),以相同的速度沿CA方向向A點勻速運動,當(dāng)點P運動到B點時,P、Q兩點同時停止運動,以PQ為邊作正△PQM(P、Q、M按逆時針排序),以QC為邊在AC上方作正△QCN,設(shè)點P運動時間為t秒.
(1)求cosA的值;
(2)當(dāng)△PQM與△QCN的面積滿足S△PQM=S△QCN時,求t的值;
(3)當(dāng)t為何值時,△PQM的某個頂點(Q點除外)落在△QCN的邊上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于反比例函數(shù)y=,下列說法不正確的是( 。
A. 函數(shù)圖象分別位于第一、第三象限
B. 當(dāng)x>0時,y隨x的增大而減小
C. 函數(shù)圖象經(jīng)過點(1,2)
D. 若點A(x1,y1),B(x2,y2)都在函數(shù)圖象上,且x1<x2,則y1>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在中,,,D是AB上的一點不與點A,B重合,連接CD,以點C為中心,把CD順時針旋轉(zhuǎn),得到CE,連接AE.
如圖1,求證:;
如圖2,若,點G為BC上一點,連接GD并延長,與EA的延長線交于點H,且,連接DE與AC相交于點F,請寫出圖2中所有正切值為2的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線交x軸正半軸于點A、點B,交y軸于點C, 直線y=-x+6經(jīng)過點B、點C;
(1)求拋物線的解析式 ;
(2)點D在x軸下方的拋物線上,連接DB、DC,點D的橫坐標(biāo)為t,△BCD的面積為S,求S與t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,,,點E是邊BC的中點動點P從點A出發(fā),沿著AB運動到點B停止,速度為每秒鐘1個單位長度,連接PE,過點E作PE的垂線交射線AD與點Q,連接PQ,設(shè)點P的運動時間為t秒.
當(dāng)時,______;
是否存在這樣的t值,使為等腰直角三角形?若存在,求出相應(yīng)的t值,若不存在,請說明理由;
當(dāng)t為何值時,的面積等于10?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】節(jié)假日期間向、某商場組織游戲,主持人請三位家長分別帶自己的孩于參加游戲,A、B、C分別表示一位家長,他們的孩子分別對應(yīng)的是a,b,若主持人分別從三位家長和三位孩予中各選一人參加游戲.
若已選中家長A,則恰好選中自己孩子的概率是______.
請用畫樹狀圖或列表法求出被選中的恰好是同一家庭成員的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列內(nèi)容,并答題:我們知道,計算n邊形的對角線條數(shù)公式為: n(n﹣3).
如果一個n邊形共有20條對角線,那么可以得到方程n(n﹣3)=20 .
整理得n2﹣3n﹣40=0;解得n=8或n=﹣5
∵n為大于等于3的整數(shù),∴n=﹣5不合題意,舍去.
∴n=8,即多邊形是八邊形.
根據(jù)以上內(nèi)容,問:
(1)若一個多邊形共有14條對角線,求這個多邊形的邊數(shù);
(2)A同學(xué)說:“我求得一個多邊形共有10條對角線”,你認(rèn)為A同學(xué)說法正確嗎?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com