【題目】已知數(shù)軸上三點M,O,N對應的數(shù)分別是-1,0,3,點P為數(shù)軸上任意點,其對應的數(shù)為x.如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設t分鐘時P點到點M、點N的距離相等,則t的值為_______.
【答案】或4.
【解析】
分別根據(jù)①當點M和點N在點P同側(cè)時;②當點M和點N在點P異側(cè)時,進行解答即可.
設運動t分鐘時,點P到點M,點N的距離相等,即PM=PN.
點P對應的數(shù)是-t,點M對應的數(shù)是-1-2t,點N對應的數(shù)是3-3t.
①當點M和點N在點P同側(cè)時,點M和點N重合,
所以-1-2t=3-3t,解得t=4,符合題意.
②當點M和點N在點P異側(cè)時,點M位于點P的左側(cè),點N位于點P的右側(cè)(因為三個點都向左運動,出發(fā)時點M在點P左側(cè),且點M運動的速度大于點P的速度,所以點M永遠位于點P的左側(cè)),
故PM=-t-(-1-2t)=t+1.PN=(3-3t)-(-t)=3-2t.
所以t+1=3-2t,解得t=,符合題意.
綜上所述,t的值為或4.
科目:初中數(shù)學 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)和函數(shù)的圖象之間的關(guān)系,小東根據(jù)學習函數(shù)的經(jīng)驗,通過畫出兩個函數(shù)圖象后,再觀察研究.
下面是小東的探究過程,請補充完成:
()下表是與的幾組對應值.
… | … | ||||||||||||
… | … |
下表是與的幾組對應值
… | … | ||||||||||||
… | … |
請補全表格__________.
()如下圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點,請根據(jù)描出的點,在同一坐標系中畫出和函數(shù)的圖象.
()觀察這兩個函數(shù)的圖象,發(fā)現(xiàn)這兩個函數(shù)圖象是關(guān)于直線成軸對稱的,請畫出這條直線.
()已知,借助函數(shù)圖象比較, , 的大小(用“”號連接).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形ABCD在平面直角坐標系中的位置如圖所示,對角線AC與BD的交點E恰好在y軸上,過點D和BC的中點H的直線交AC于點F,線段DE,CD的長是方程x2﹣9x+18=0的兩根,請解答下列問題:
(1)求點D的坐標;
(2)若反比例函數(shù)y=(k≠0)的圖象經(jīng)過點H,則k= ;
(3)點Q在直線BD上,在直線DH上是否存在點P,使以點F,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設長方形地面,觀察下列圖形,探究并解答問題:
(1)在第4個圖中,共有白色瓷磚______塊;在第個圖中,共有白色瓷磚_____塊;
(2)試用含的代數(shù)式表示在第個圖中共有瓷磚的塊數(shù);
(3)如果每塊黑瓷磚35元,每塊白瓷磚50元,當時,求鋪設長方形地面共需花多少錢購買瓷磚?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AH是△ABC的高,D是邊AB上一點,CD與AH交于點E.已知AB=AC=6,cosB=,
AD∶DB=1∶2.
(1)求△ABC的面積;
(2)求CE∶DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于任意四個有理數(shù)a,b,c,d,可以組成兩個有理數(shù)對(a,b)與(c,d).我們規(guī)定:
(a,b)★(c,d)=bc-ad.
例如:(1,2)★(3,4)=2×3-1×4=2.
根據(jù)上述規(guī)定解決下列問題:
(1)有理數(shù)對(2,-3)★(3,-2)=_______;
(2)若有理數(shù)對(-3,2x-1)★(1,x+1)=7,則x=_______;
(3)當滿足等式(-3,2x-1)★(k,x+k)=5+2k的x是整數(shù)時,求整數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BCD=∠D=90°,E是邊AB的中點.已知AD=1,AB=2.
(1)設BC=x,CD=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(2)當∠B=70°時,求∠AEC的度數(shù);
(3)當△ACE為直角三角形時,求邊BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x﹣1的圖象經(jīng)過A(0,﹣1)、B(1,0)兩點,與反比例函數(shù)y=的圖象在第一象限內(nèi)的交點為M,若△OBM的面積為1.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)在x軸上是否存在點P,使AM⊥PM?若存在,求出點P的坐標;若不存在,說明理由;
(3)x軸上是否存在點Q,使△QBM∽△OAM?若存在,求出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展“陽光體育”活動,決定開設乒乓球、籃球、跑步、跳繩這四種運動項目,學生只能選擇其中一種,為了解學生喜歡哪一種項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成兩張不完整的統(tǒng)計圖,請你結(jié)合圖中的信息解答下列問題:
(1)樣本中喜歡籃球項目的人數(shù)百分比是 ;其所在扇形統(tǒng)計圖中的圓心角的度數(shù)是 ;
(2)把條形統(tǒng)計圖補畫完整并注明人數(shù);
(3)已知該校有1000名學生,根據(jù)樣本估計全校喜歡乒乓球的人數(shù)是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com