【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC經(jīng)過平移后得到△A1B1C1,已知點(diǎn)C1的坐標(biāo)為(4,0),寫出頂點(diǎn)A1,B1的坐標(biāo);
(2)若△ABC和△A2B2C2關(guān)于原點(diǎn)O成中心對稱圖形,寫出△A2B2C2的各頂點(diǎn)的坐標(biāo);
(3)將△ABC繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到△A3B3C3,寫出△A3B3C3的各頂點(diǎn)的坐標(biāo).
【答案】(1)點(diǎn)A1的坐標(biāo)為(2,2),B1點(diǎn)的坐標(biāo)為(3,﹣2);(2)A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)△A2B3C3為所作,A3(5,3),B3(1,2),C3(3,1);
【解析】試題分析:(1)利用點(diǎn)C和點(diǎn)C1的坐標(biāo)變化得到平移的方向與距離,然后利用此平移規(guī)律寫出頂點(diǎn)A1,B1的坐標(biāo);
(2)根據(jù)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特征求解;
(3)利用網(wǎng)格和旋轉(zhuǎn)的性質(zhì)畫出△A2B3C3,然后寫出△A2B3C3的各頂點(diǎn)的坐標(biāo).
試題解析:(1)如圖,△A1B1C1為所作,
因?yàn)辄c(diǎn)C(﹣1,3)平移后的對應(yīng)點(diǎn)C1的坐標(biāo)為(4,0),
所以△ABC先向右平移5個(gè)單位,再向下平移3個(gè)單位得到△A1B1C1,
所以點(diǎn)A1的坐標(biāo)為(2,2),B1點(diǎn)的坐標(biāo)為(3,﹣2);
(2)因?yàn)?/span>△ABC和△A1B2C2關(guān)于原點(diǎn)O成中心對稱圖形,
所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);
(3)如圖,△A2B3C3為所作,A3(5,3),B3(1,2),C3(3,1);
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列一組式的變形過程,然后回答問題: 例1: = = = = ﹣1.
例2: = ﹣ , = ﹣ , = ﹣
利用以上結(jié)論解答以下問題:
(1) =; =;
(2)你用含n(n為正整數(shù))的關(guān)系式表示上述各式子的變形規(guī)律.
(3)應(yīng)用上面的結(jié)論,求下列式子的值. + + +…+
(4)拓展提高,求下列式子的值. + + +…+ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)多邊形中,除一個(gè)內(nèi)角外,其余各內(nèi)角和是120°,則這個(gè)角的度數(shù)是( 。
A. 60° B. 80° C. 100° D. 120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)數(shù)是9,另一個(gè)數(shù)比9的相反數(shù)大2,那么這兩個(gè)數(shù)的和為( )
A.2
B.﹣2
C.20
D.﹣20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)畫線段AC=30mm(點(diǎn)A在左側(cè));
(2)以C為頂點(diǎn),CA為一邊,畫∠ACM=90°;
(3)以A為頂點(diǎn),AC為一邊,在∠ACM的同側(cè)畫∠CAN=60°,AN與CM相交于點(diǎn)B;量得AB是多少mm?
(4)畫出AB中點(diǎn)D,連接DC,此時(shí)量得DC是多少mm?請你猜想AB與DC的數(shù)量關(guān)系是:AB是DC的多少倍?
(5)作點(diǎn)D到直線BC的距離DE,且量得DE等于多少mm?請你猜想DE與AC的數(shù)量關(guān)系是:DE和AC的數(shù)量關(guān)系是?,位置關(guān)系是?.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點(diǎn)A落在CD邊上的點(diǎn)A′處,點(diǎn)B落在點(diǎn)B′處,若∠2=40°,則圖中∠1的度數(shù)為( )
A. 115° B. 120° C. 130° D. 140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知E,F(xiàn)分別為正方形ABCD的邊BC,CD上的點(diǎn),AF,DE相交于點(diǎn)G,當(dāng)E,F(xiàn)分別為邊BC,CD的中點(diǎn)時(shí),有:①AF=DE;②AF⊥DE成立.
試探究下列問題:
(1)如圖1,若點(diǎn)E不是邊BC的中點(diǎn),F(xiàn)不是邊CD的中點(diǎn),且CE=DF,上述結(jié)論①,②是否仍然成立?(請直接回答“成立”或“不成立”),不需要證明)
(2)如圖2,若點(diǎn)E,F(xiàn)分別在CB的延長線和DC的延長線上,且CE=DF,此時(shí),上述結(jié)論①,②是否仍然成立?若成立,請寫出證明過程,若不成立,請說明理由;
(3)如圖3,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M,N,P,Q分別為AE,EF,F(xiàn)D,AD的中點(diǎn),請判斷四邊形MNPQ是“矩形、菱形、正方形”中的哪一種,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com