如圖,⊙O的直徑AB=10,CD是⊙O的弦,AC與BD相交于點P.
(1)判斷△APB與△DPC是否相似?并說明理由;
(2)設∠BPC=α,如果sinα是方程5x2-13x+6=0的根,求cosα的值;
(3)在(2)的條件下,求弦CD的長?

【答案】分析:(1)根據(jù)圓周角定理,可得出△CPD和△BPA的兩組對應角相等,由此可判定兩個三角形相似;
(2)通過解方程可求出sinα的值(注意sinα的取值范圍),進而可得出cosα的值;
(3)若連接BC,則∠ACB=90°,△BPC是直角三角形;根據(jù)cosα的值,即可求出PC、BC的比例關系式,根據(jù)(1)的相似三角形可得出CD:AB=CP:BP=cosα,由此可求出弦CD的長.
解答:解:(1)相似;
∵∠A=∠D,∠APB=∠DPC
∴△APB∽△DPC;

(2)連接BC.
∵AB在直徑,
∴AC⊥BC,
∴∠PCB為直角,
∵5x2-13x+6=0,
∴(x-2)(5x-3)=0;
解得:x1=2(不符合題意),x2=;
∴sinα=,∴cosα=;

(3)在(2)成立的條件下,得:cosα=
∵AB在直徑,
∴AC⊥BC,
=cosα=,
又∵=,AB=10,
=,
∴CD=8.
點評:此題考查了圓周角定理、相似三角形的判定和性質、一元二次方程的解法、銳角三角函數(shù)的定義等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O的直徑AB與弦CD相交于E,
BC
=
BD
,⊙O的切線BF與弦AD的延長線相交于點F.
(1)求證:CD∥BF.
(2)連接BC,若⊙O的半徑為4,cos∠BCD=
3
4
,求線段AD、CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的直徑AB與弦CD(不是直徑)相交于E,E是CD的中點,過點B作BF∥CD交AD的延長線于
點F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為5,∠BCD=38°,求線段BF、BC的長.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的直徑AB,CD互相垂直,P為  上任意一點,連PC,PA,PD,PB,下列結論:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正確的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•柳州)如圖,⊙O的直徑AB=6,AD、BC是⊙O的兩條切線,AD=2,BC=
92

(1)求OD、OC的長;
(2)求證:△DOC∽△OBC;
(3)求證:CD是⊙O切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的直徑AB垂直弦CD于P,且P是半徑OB的中點,CD=6cm,則直徑AB的長是
4
3
cm
4
3
cm

查看答案和解析>>

同步練習冊答案