【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,
(1)試判斷DG與BC的位置關(guān)系,并說明理由.
(2)若∠A=70°,∠B=40°,求∠AGD的度數(shù).
【答案】
(1)
解:DG∥BC,
理由是:∵CD⊥AB,EF⊥AB,
∴∠CDB=∠EFB=90°,
∴CD∥EF,
∴∠1=∠BCD,
∵∠1=∠2,
∴∠2=∠BCD,
∴DG∥BC
(2)
解:∵∠A=70°,∠B=40°,
∴∠ACB=180°﹣∠B﹣∠A=70°,
∵DG∥BC,
∴∠AGD=∠ACB=70°
【解析】(1)根據(jù)平行線的判定推出CD∥EF,根據(jù)平行線的性質(zhì)得出∠1=∠BCD,求出∠2=∠BCD,根據(jù)平行線的判定得出即可;(2)根據(jù)三角形內(nèi)角和定理求出∠ACB,根據(jù)平行線的性質(zhì)得出∠AGD=∠ACB,即可得出答案.
【考點精析】本題主要考查了平行線的判定和平行線的判定與性質(zhì)的相關(guān)知識點,需要掌握同位角相等,兩直線平行;內(nèi)錯角相等,兩直線平行;同旁內(nèi)角互補,兩直線平行;由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先畫出了如圖的四邊形ABCD,并寫出了如下不完整的已知和求證.
(1)在方框中填空,以補全已知和求證; 已知:如圖,在四邊形ABCD中,BC=AD, .
求證:四邊形ABCD是 .
(2)寫出證明過程:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解一元二次方程 x2﹣4x﹣7=0 時,需要將原方程化為( )
A. (x + 2)2 =11B. (x+2)2= 7
C. (x﹣2)2 =11D. (x﹣2)2= 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為更好地培養(yǎng)學(xué)生興趣,開展“拓展課程走班選課”活動,隨機抽查了部分學(xué)生,了解他們最喜愛的項目類型(分為書法、圍棋、戲劇、國畫共4類),并將統(tǒng)計結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖.
最喜愛的項目類型頻數(shù)分布表
項目類型 | 頻數(shù) | 頻率 |
書法類 | 18 | a |
圍棋類 | 14 | 0.28 |
喜劇類 | 8 | 0.16 |
國畫類 | b | 0.20 |
根據(jù)以上信息完成下列問題:
(1)直接寫出頻數(shù)分布表中a的值;
(2)補全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1500名,估計該校最喜愛圍棋的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一商店在某時間以每件480元的價格賣出兩件衣服,其中一件盈利20%,另一件虧損20%,賣這兩件衣服是盈利還是虧損,或是不盈不虧?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),矩形ABCD,AB=2cm,AD=6cm,P、Q分別為兩個動點,點P從B出發(fā)沿邊BC運動,每秒1cm,點Q從B出發(fā)沿邊B—C—D運動,每秒2cm.
(1)若P、Q兩點同時出發(fā),其中一點到達終點時另一點也隨之停止,設(shè)△BPQ面積為S,時間為t秒,求S關(guān)于t的函數(shù)關(guān)系式及自變量的取值范圍;
(2)若R為AD中點,連接RP、RQ,當以R、P、Q為頂點的三角形與△BPQ相似(含全等)時,求t的值;
(3)如圖(2)M為AD邊上一點,AM=2,點Q在1.5秒時便停止運動,點P繼續(xù)在BC上運動,AP與BQ交于點E,PM交CQ于點F,設(shè)四邊形QEPF的面積為y,求y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是( 。
A.3km/h和4km/h
B.3km/h和3km/h
C.4km/h和4km/h
D.4km/h和3km/h
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知開口向上的拋物線y=ax2﹣2ax+3,在此拋物線上有A(﹣0.5,y1),B(2,y2)和C(3,y3)三點,則y1,y2和y3的大小關(guān)系為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com