【題目】兩個(gè)大小不同的等腰直角三角形三角板按圖1所示的位置放置,圖2是由它抽象出的幾何圖形AB=AC,AE=AD,BAC=EAD=90°,B,CE在同一條直線上,連接DC

1請(qǐng)找出圖2中與ABE全等的三角形,并給予證明;

2證明:DCBE

【答案】1ACD≌△ABE證明見(jiàn)解析;2證明見(jiàn)解析

【解析】

試題分析:根據(jù)等腰直角三角形的性質(zhì)利用SAS判定ABE≌△ACD;因?yàn)槿热切蔚膶?duì)應(yīng)角相等,所以ACD=ABE=45°,已知ACB=45°,所以可得到BCD=ACB+ACD=90°即DCBE

試題解析:1解:圖2中ACD≌△ABE

證明:∵△ABC與AED均為等腰直角三角形,

AB=AC,AE=AD,BAC=EAD=90°

∴∠BAC+CAE=EAD+CAE

BAE=CAD

ABE與ACD中,

∴△ABE≌△ACDSAS;

2證明:由1ABE≌△ACD

ACD=ABE=45°

∵∠ACB=45°,

∴∠BCD=ACB+ACD=90°

DCBE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1:在四邊形ABCD中,ABAD,BAD120°,BADC90°EF分別是BC、CD上的點(diǎn).且∠EAF60°.探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.

小王同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G,使DGBE.連結(jié)AG,先證明ABE≌△ADG,再證明AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是   

探索延伸:

如圖2,若在四邊形ABCD中,ABAD,BD180°EF分別是BC、CD上的點(diǎn),且∠EAFBAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;

實(shí)際應(yīng)用:

如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn)1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇之間的夾角為70°,試求此時(shí)兩艦艇之間的距離?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=3,點(diǎn)D在邊AC上,且AD=2CD,DE⊥AB,垂足為點(diǎn)E,聯(lián)結(jié)CE,求:
(1)線段BE的長(zhǎng);
(2)∠ECB的余切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)三班學(xué)生蘇琪為幫助同桌萬(wàn)宇鞏固“平面直角坐標(biāo)系四個(gè)象限內(nèi)及坐標(biāo)軸上的點(diǎn)的坐標(biāo)特點(diǎn)”這一基礎(chǔ)知識(shí),在三張完全相同且不透明的卡片正面分別寫(xiě)上了﹣3,0,2三個(gè)數(shù)字,背面向上洗勻后隨機(jī)抽取一張,將卡片上的數(shù)字記為a,再?gòu)氖O碌膬蓮堉须S機(jī)取出一張,將卡片上的數(shù)字記為b,然后叫萬(wàn)宇在平面直角坐標(biāo)系中找出點(diǎn)M(a,b)的位置.
(1)請(qǐng)你用樹(shù)狀圖幫萬(wàn)宇同學(xué)進(jìn)行分析,并寫(xiě)出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M在第二象限的概率;
(3)張老師在萬(wàn)宇同學(xué)所畫(huà)的平面直角坐標(biāo)系中,畫(huà)了一個(gè)半徑為3的⊙O,過(guò)點(diǎn)M能作多少條⊙O的切線?請(qǐng)直接寫(xiě)出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、C分別為坐標(biāo)軸上上的三個(gè)點(diǎn),且OA=1,OB=3,OC=4,
(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)M為該拋物線上一動(dòng)點(diǎn),在(2)的條件下,請(qǐng)求出當(dāng)|PM﹣AM|的最大值時(shí)點(diǎn)M的坐標(biāo),并直接寫(xiě)出|PM﹣AM|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC在平面直角坐標(biāo)系中的位置如圖所示,直線l過(guò)點(diǎn)M(3,0)且平行于y軸.

(1)作出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出△A1B1C1各頂點(diǎn)的坐標(biāo).

(2)如果點(diǎn)P的坐標(biāo)是(﹣a,0),其中a>0,點(diǎn)P關(guān)于y軸的對(duì)稱(chēng)點(diǎn)是P1,點(diǎn)P1關(guān)于直線l的對(duì)稱(chēng)點(diǎn)是P2,求P1P2的長(zhǎng).(用含a的代數(shù)式表示)

(3)通過(guò)計(jì)算加以判斷,PP2的長(zhǎng)會(huì)不會(huì)隨點(diǎn)P位置的變化而變化.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖1為長(zhǎng)方形紙片ABCD,AD=26,AB=22,直線L、M皆為長(zhǎng)方形的對(duì)稱(chēng)軸.今將長(zhǎng)方形紙片沿著L對(duì)折后,再沿著M對(duì)折,并將對(duì)折后的紙片左上角剪下直角三角形,形成一個(gè)五邊形EFGHI,如圖2.最后將圖2的五邊形展開(kāi)后形成一個(gè)八邊形,如圖2,且八邊形的每一邊長(zhǎng)恰好均相等.
(1)若圖2中HI長(zhǎng)度為x,請(qǐng)以x分別表示剪下的直角三角形的勾長(zhǎng)和股長(zhǎng).
(2)請(qǐng)求出圖3中八邊形的一邊長(zhǎng)的數(shù)值,并寫(xiě)出完整的解題過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】食品安全是關(guān)乎民生的重要問(wèn)題,在食品中添加過(guò)量的添加劑對(duì)人體健康有害,但適量的添加劑對(duì)人體健康無(wú)害而且有利于食品的儲(chǔ)存和運(yùn)輸.為提高質(zhì)量,做進(jìn)一步研究,某飲料加工廠需生產(chǎn)A、B兩種飲料共100瓶,需加入同種添加劑270克,其中A飲料每瓶需加添加劑2克,B飲料每瓶需加添加劑3克,飲料加工廠生產(chǎn)了A、B兩種飲料各多少克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是(

A.a>0
B.3是方程ax2+bx+c=0的一個(gè)根
C.a+b+c=0
D.當(dāng)x<1時(shí),y隨x的增大而減小

查看答案和解析>>

同步練習(xí)冊(cè)答案