如圖,⊙O的圓心在定角∠α(0°<α<180°)的角平分線上運動,且⊙O與∠α的兩邊相切,圖中陰影部分的面積S關于⊙O的半徑r(r>0)變化的函數(shù)圖象大致是【   】
A.B.C.D.
C。
如圖,連接OB、OC、OA,

∵⊙O切AM于B,切AN于C,
∴∠OBA=∠OCA=90°,OB=OC=r,AB=AC。
∴∠BOC=360°﹣90°﹣90°﹣α=(180﹣α)°。
∵AO平分∠MAN,
∴∠BAO=∠CAO=α,
∴陰影部分的面積。
∴S與r之間是二次函數(shù)關系。
∵r>0,∴二次函數(shù)圖象在第一象限。
故選C。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線與直線交于點O(0,0),。點B是拋物線上O,A之間的一個動點,過點B分別作x軸、y軸的平行線與直線OA交于點C,E。

(1)求拋物線的函數(shù)解析式;
(2)若點C為OA的中點,求BC的長;
(3)以BC,BE為邊構造條形BCDE,設點D的坐標為(m,n),求m,n之間的關系式。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系xOy中,直線y=kx(k為常數(shù))與拋物線交于A,B兩點,且A點在y軸左側(cè),P點的坐標為(0,﹣4),連接PA,PB.有以下說法:
①PO2=PA•PB;
②當k>0時,(PA+AO)(PB﹣BO)的值隨k的增大而增大;
③當時,BP2=BO•BA;
④△PAB面積的最小值為
其中正確的是     (寫出所有正確說法的序號)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)y=x2+1的圖象的頂點坐標是     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。

(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MN∥y軸交直線BC于點N,求MN的最大值;
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設平行四邊形CBPQ的面積為S1,△ABN的面積為S2,且S1=6S2,求點P的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知M1(3,2),N1(5,﹣1),線段M1N1平移至線段MN處(注:M1與M,N1與N分別為對應點).

(1)若M(﹣2,5),請直接寫出N點坐標.
(2)在(1)問的條件下,點N在拋物線上,求該拋物線對應的函數(shù)解析式.
(3)在(2)問條件下,若拋物線頂點為B,與y軸交于點A,點E為線段AB中點,點C(0,m)是y軸負半軸上一動點,線段EC與線段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)問條件下,動點P從B點出發(fā),沿x軸正方向勻速運動,點P運動到什么位置時(即BP長為多少),將△ABP沿邊PE折疊,△APE與△PBE重疊部分的面積恰好為此時的△ABP面積的,求此時BP的長度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)的最小值是         

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,拋物線軸的交點的個數(shù)是___________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)(a≠0)的圖象如圖所示,則下列結論中正確的是
A.a(chǎn)>0 B.當﹣1<x<3時,y>0
C.c<0 D.當x≥1時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案