【題目】如圖,一次函數(shù)y=2x﹣4x軸交于點A,與y軸交于點E,過點AAE的垂線交y軸于點B,連接AB,以AB為邊向上作正方形ABCD(如圖所示),則點D的坐標(biāo)為__________

【答案】(3,2)

【解析】

過點DDFx軸,垂足為F,求得點A和點E的坐標(biāo),從而可得到OA、OE的長,然后依據(jù)射影定理可得到OB的長,接下來,證明△OBA≌△FAD,從而可得到OB=AF=1,OA=DF=2,故此可得到點D的坐標(biāo).

如圖所示:過點DDFx軸,垂足為F.

y=0得:2x-4=0,解得:x=2,

OA=2.

x=0y=-4,

OE=4.

OBOE=AO2,

OB=1

ABCD為正方形,

∴∠BAO+DAF=90°,

又∵∠ADF+DAF=90°

∴∠BAO=ADF.

在△OBA和△FAD中,∠BOA=ADF,BAO=ADF,BA=DF,

∴△OBA≌△FAD,

OB=AF=1,OA=DF=2.

D(3,2).

故答案為:(3,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx過點B(1,﹣3),對稱軸是直線x=2,且拋物線與x軸的正半軸交于點A.

(1)求拋物線的解析式,并根據(jù)圖象直接寫出當(dāng)y≤0時,自變量x的取值范圖;

(2)在第二象限內(nèi)的拋物線上有一點P,當(dāng)PABA時,求PAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解

在⊙I中,弦AFDE相交于點Q,則AQQF=DQQE.你可以利用這一性質(zhì)解決問題.

問題解決

如圖,在平面直角坐標(biāo)系中,等邊△ABC的邊BCx軸上,高AOy軸的正半軸上,點Q(0,1)是等邊△ABC的重心,過點Q的直線分別交邊AB、AC于點D、E,直線DE繞點Q轉(zhuǎn)動,設(shè)∠OQD=α(60°<α<120°),△ADE的外接圓⊙Iy軸正半軸于點F,連接EF.

(1)填空:AB= ;

(2)在直線DE繞點Q轉(zhuǎn)動的過程中,猜想:的值是否相等?試說明理由.

(3)①求證:AQ2=ADAE﹣DQQE;

②記AD=a,AE=b,DQ=m,QE=m(a、b、m、n均為正數(shù)),請直接寫出mn的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市為方便行人過馬路,打算修建一座高為4x(m)的過街天橋.已知天橋的斜面坡度i=1:0.75是指坡面的鉛直高度DE(CF)與水平寬度AE(BF)的比,其中DC∥AB,CD=8x(m).

(1)請求出天橋總長和馬路寬度AB的比;

(2)若某人從A地出發(fā),橫過馬路直行(A→E→F→B)到達B地,平均速度是2.5m/s;返回時從天橋由BC→CD→DA到達A地,平均速度是1.5m/s,結(jié)果比去時多用了12.8s,請求出馬路寬度AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A(﹣4,0),點Cy軸正半軸上的一點,且∠ACB90°ACBC

1)如圖①,若點B在第四象限,C0,2),求點B的坐標(biāo);

2)如圖②,若點B在第二象限,以OC為直角邊在第一象限作等腰RtCOF,連接BF,交y軸于點M,求CM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰RtABC的直角邊長為32,從直角頂點A作斜邊BC的垂線交BCD1,再從D1D1D2ACACD2,再從D2D2D3BCBCD3,,則AD1+D2D3+D4D5+D6D7+D8D9_____;D1D2+D3D4+D5D6+D7D8+D9D10_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,我們定義直線為拋物線、bc為常數(shù),夢想直線;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其夢想三角形”.

已知拋物線與其夢想直線交于A、B兩點A在點B的左側(cè),與x軸負半軸交于點C

填空:該拋物線的夢想直線的解析式為______,點A的坐標(biāo)為______,點B的坐標(biāo)為______;

如圖,點M為線段CB上一動點,將AM所在直線為對稱軸翻折,點C的對稱點為N,若為該拋物線的夢想三角形,求點N的坐標(biāo);

當(dāng)點E在拋物線的對稱軸上運動時,在該拋物線的夢想直線上,是否存在點F,使得以點AC、EF為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的方程組,其中﹣3≤a≤1,給出下列結(jié)論:

是方程組的解;

②當(dāng)a=﹣2時,x+y=0;

③若y≤1,則1≤x≤4;

④若S=3x﹣y+2a,則S的最大值為11.

其中正確的有_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC為等邊三角形,FB平分ABC,DBF的中點,連接ADBC的延長線于點E,若EFBF,則_______________

查看答案和解析>>

同步練習(xí)冊答案