【題目】下列命題的逆命題,是假命題的是( )
A.兩直線平行,內(nèi)錯角相等B.全等三角形的對應(yīng)邊相等
C.對頂角相等D.有一個角為度的三角形是直角三角形
【答案】C
【解析】
根據(jù)平行線的判定與性質(zhì),可判斷A;
根據(jù)全等三角形的判斷與性質(zhì),可判斷B;
根據(jù)對頂角性質(zhì),可判斷C;
根據(jù)直角三角形的判斷與性質(zhì),可判斷D.
A“兩直線平行,內(nèi)錯角相等”的逆命題是“內(nèi)錯角相等,兩直線平行”是真命題,故A不符合題意;
B“全等三角形的對應(yīng)邊相等”的逆命題是“三邊對應(yīng)相等的兩個三角形全等”是真命題,故B不符合題意;
C“對頂角相等”的逆命題是“相等的角是對頂角”是假命題,故C符合題意;
D“有一個角為90度的三角形是直角三角形”的逆命題是“直角三角形中有一個角是90度”是真命題,故D不符合題意;
故選C
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CD∥AB,OE平分∠AOD,OF⊥OE,OG⊥CD,∠CDO=50°,則下列結(jié)論:① ∠AOE=65°;② OF平分∠BOD;③ ∠GOE=∠DOF;④ ∠AOE=∠GOD,其中正確結(jié)論的個數(shù)是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,以點為圓心,以為半徑的圓與軸相交于點,與軸相交于點.
(1)若拋物線經(jīng)過兩點,求拋物線的解析式,并判斷點是否在該拋物線上.
(2)在(1)中的拋物線的對稱軸上求一點,使得的周長最小.
(3)設(shè)為(1)中的拋物線的對稱軸上的一點,在拋物線上是否存在這樣的點,使得四邊形是平行四邊形.若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】月電科技有限公司用160萬元,作為新產(chǎn)品的研發(fā)費用,成功研制出了一種市場急需的電子產(chǎn)品,已于當年投入生產(chǎn)并進行銷售.已知生產(chǎn)這種電子產(chǎn)品的成本為4元/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量y(萬件)與銷售價格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.設(shè)公司銷售這種電子產(chǎn)品的年利潤為s(萬元).(注:若上一年盈利,則盈利不計入下一年的年利潤;若上一年虧損,則虧損計作下一年的成本.)
(1)請求出y(萬件)與x(元/件)之間的函數(shù)關(guān)系式;
(2)求出第一年這種電子產(chǎn)品的年利潤s(萬元)與x(元/件)之間的函數(shù)關(guān)系式,并求出第一年年利潤的最大值.
(3)假設(shè)公司的這種電子產(chǎn)品第一年恰好按年利潤s(萬元)取得最大值時進行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種電子產(chǎn)品每件的銷售價格x(元)定在8元以上(x>8),當?shù)诙甑哪昀麧櫜坏陀?/span>103萬元時,請結(jié)合年利潤s(萬元)與銷售價格x(元/件)的函數(shù)示意圖,求銷售價格x(元/件)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務(wù)精神,傳播“奉獻他人、提升自我”的志愿服務(wù)理念,東營市某中學利用周末時間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務(wù)活動(每人只參加一個活動),九年級某班全班同學都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)求該班的人數(shù);
(2)請把折線統(tǒng)計圖補充完整;
(3)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);
(4)小明和小麗參加了志愿服務(wù)活動,請用樹狀圖或列表法求出他們參加同一服務(wù)活動的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.
(1)求證:AB是⊙O的切線;
(2)若AC=8,tan∠BAC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一個長方形放置在平面直角坐標系中,,點是的中點,反比例函數(shù)圖像過點且和相交于點.
(1)求直線和反比例函數(shù)的解析式;
(2)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,點E、F在線段AC上,過E,F分別作DE⊥AC,BF⊥AC,垂足分別為點E,F;DE,BF分別在線段AC的兩側(cè),且AE=CF,AB=CD,BD與AC相交于點G.
(1)求證:EG=GF;
(2)若點E在F的右邊,如圖2時,其余條件不變,上述結(jié)論是否成立?請說明理由.
(3)若點E、F分別在線段CA的延長線與反向延長線上,其余條件不變,(1)中結(jié)論是否成立?(要求:在備用圖中畫出圖形,直接判斷,不必說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小鵬學完解直角三角形知識后,給同桌小艷出了一道題:“如圖所示,把一張長方形卡片ABCD放在每格寬度都為6mm的橫格紙中,恰好四個頂點都在橫格線上,已知a=36°,求長方形卡片的周長.”請你幫小艷解答這道題.(精確到1mm)(參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com