【題目】宜居襄陽是我們的共同愿景,空氣質(zhì)量備受人們關(guān)注.我市某空氣質(zhì)量監(jiān)測站點檢測了該區(qū)域每天的空氣質(zhì)量情況,統(tǒng)計了20131月份至4月份若干天的空氣質(zhì)量情況,并繪制了如下兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息,解答下列問題:

1)統(tǒng)計圖共統(tǒng)計了   天的空氣質(zhì)量情況;

2)請將條形統(tǒng)計圖補充完整;空氣質(zhì)量為優(yōu)所在扇形的圓心角度數(shù)是   ;

3)從小源所在環(huán)保興趣小組4名同學(xué)(2名男同學(xué),2名女同學(xué))中,隨機選取兩名同學(xué)去該空氣質(zhì)量監(jiān)測站點參觀,則恰好選到一名男同學(xué)和一名女同學(xué)的概率是   

【答案】1100;(2)統(tǒng)計圖見解析,72°;(3

【解析】

試題(1)根據(jù)良的天數(shù)是70天,占70%,即可求得統(tǒng)計的總天數(shù);

2)利用360度乘以對應(yīng)的百分比即可求解;

3)利用概率公式即可求解.

解:(170÷70%=100(天),故答案是:100

2)空氣質(zhì)量為優(yōu)所在扇形圓心角度數(shù)是:360°×20%=72°;

如圖所示:

3)班級的40名同學(xué)中,隨機選取一名同學(xué)去該空氣質(zhì)量監(jiān)測點參觀,則恰好選到小源的概率是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCO的頂點BC在第二象限,點A(3,0),反比例函數(shù)y(k0)圖象經(jīng)過點CAB邊的中點D,若∠Bα,則k的值為(  )

A. 4tanαB. 2sinαC. 4cosαD. 2tan

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為y=x,點O1的坐標(biāo)為(1,0),以O1為圓心,O1O為半徑畫半圓,交直線l于點P1,交x軸正半軸于點O2,由弦P1O2圍成的弓形面積記為S1,以O2為圓心,O2O為半徑畫圓,交直線l于點P2,交x軸正半軸于點O3,由弦P2O3和圍成的弓形面積記為S2,以O3為圓心,O3O為半徑畫圓,交直線l于點P3,交x軸正半軸于點O4,由弦P3O4圍成的弓形面積記為S3;按此做法進(jìn)行下去,其中S2018的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,等邊ABC內(nèi)接于⊙O,點P是⌒AB上的任意一點,連結(jié)PAPB,PC.點DPC上一點,連結(jié)DB

(1) PD=PB,求∠PBD的度數(shù);

(2)(1)的條件下,小麗探究的值,她認(rèn)為只要弄清PA+PBPC的關(guān)系即可,她的思路可以用以下框圖表示:

根據(jù)小麗的思路,請你完整地書寫本題的探究過程,并求出的值.

(3)如圖2,把條件等邊ABC”改為正方形ABCD”,其余條件不變,判斷是定值嗎?若是,請求出這個值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm

(1)若花園的面積為252m2,求x的值;

(2)若在P處有一棵樹與墻CDAD的距離分別是17m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1ax+223y2x32+1交于點A1,3),過點Ax軸的平行線,分別交兩條拋物線于點BC.則以下結(jié)淪:①無論x取何值,y2的值總是正數(shù);②2a1;③當(dāng)x0時,y2y14;④2AB3AC;其中正確結(jié)論是(  )

A. ①②B. ②③C. ③④D. ①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知開口向上的拋物線yax2+bx+cx軸交于A(﹣3,0)、B1,0)兩點,與y軸交于C點,∠ACB不小于90°

1)求點C的坐標(biāo)(用含a的代數(shù)式表示);

2)求系數(shù)a的取值范圍;

3)設(shè)拋物線的頂點為D,求BCDCD邊上的高h的最大值.

4)設(shè)E(-,0),當(dāng)∠ACB90°,在線段AC上是否存在點F,使得直線EFABC的面積平分?若存在,求出點F的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知正方形的邊長為a,將此正方形按照下面的方法進(jìn)行剪拼:第一次,先沿正方形的對邊中點連線剪開,然后對接為一個長方形,則此長方形的周長為___;第二次,再沿長方形的對邊(長方形的寬)中點連線剪開,對接為新的長方形,如此繼續(xù)下去,第n次得到的長方形的周長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yax+b與反比例函數(shù)y的圖象交于A、B兩點,點A坐標(biāo)為(m,2),點B坐標(biāo)為(﹣4,n),OAx軸正半軸夾角的正切值為,直線ABy軸于點C,過Cy軸的垂線,交反比例函數(shù)圖象于點D,連接OD、BD

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求四邊形OCBD的面積.

查看答案和解析>>

同步練習(xí)冊答案