【題目】已知關(guān)于a的方程2(a+2)=a+4的解也是關(guān)于x的方程2(x﹣3)﹣b=7的解.
(1)求a、b的值;
(2)若線段AB=a,在直線AB上取一點P,恰好使=b,點Q為PB的中點,請畫出圖形并求出線段AQ的長.
【答案】(1)a=8,b=3;(2)7或10.
【解析】試題分析:(1)根據(jù)同解方程,可得兩個方程的解相同,根據(jù)第一個方程的解,可求出第二個方程中的b;
(2)分類討論,P在線段AB上,根據(jù) ,可求出PB的長,根據(jù)Q是PB線段PB的中點,可得PQ的長,根據(jù)線段的和差,可得AQ;P在線段AB的延長線上,根據(jù),可求出PB的長,根據(jù)Q是PB線段PB的中點,可得BQ的長,根據(jù)線段的和差,可得AQ.
試題解析:
(1)2(a-2)=a+4,
2a-4=a+4
a=8,
∵x=a=8,
把x=8代入方程2(x-3)-b=7,
∴2(8-3)-b=7,
b=3;
(2)①如圖:點P在線段AB上,
=3,
AB=3PB,AB=AP+PB=3PB+PB=4PB=8,
PB=2,Q是PB的中點,PQ=BQ=1,
AQ=AB-BQ=8-1=7,
②如圖:點P在線段AB的延長線上,
=3,
PA=3PB,PA=AB+PB=3PB,
AB=2PB=8,
PB=4,
Q是PB的中點,BQ=PQ=2,
AQ=AB+BQ=8+2=10.
所以線段AQ的長是7或10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一個直角三角形紙片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分別是AC、AB邊上點,連接EF,將紙片ACB的一角沿EF折疊.
(1)如圖①,若折疊后點A落在AB邊上的點D處,且使S四邊形ECBF=3S△AEF,則AE= ;
(2)如圖②,若折疊后點A落在BC邊上的點M處,且使MF∥CA.求AE的長;
(3)如圖③,若折疊后點A落在BC延長線上的點N處,且使NF⊥AB.求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在溫度不變的條件下,一定質(zhì)量的氣體的壓強(qiáng)p與它的體積V成反比例,當(dāng)V=200時,p=50,則當(dāng)p=25時,V= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的命題個數(shù)為( )
①所有的等腰三角形都相似;
②有一對銳角相等的兩個直角三角形相似;
③所有的正方形都相似;
④四個角對應(yīng)相等的兩個梯形相似.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在已知角內(nèi)畫射線,畫1條射線,圖中共有 個角;畫2條射線,圖中共有 個角;畫3條射線,圖中共有 個角;求畫n條射線所得的角的個數(shù) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運(yùn)動,且始終保持AD=CE.連接DE、DF、EF.
(1)求證:△ADF≌△CEF;
(2)試證明△DFE是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年5月某日,重慶部分區(qū)縣的最高溫度如下表所示:
地區(qū) | 合川 | 永川 | 江津 | 涪陵 | 豐都 | 梁平 | 云陽 | 黔江 |
溫度(℃) | 25 | 26 | 29 | 26 | 24 | 28 | 28 | 29 |
則這組數(shù)據(jù)的中位數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某點從數(shù)軸上的A點出發(fā),第1次向右移動1個單位長度至B點,第2次從B點向左移動2個單位長度至C點,第3次從C點向右移動3個單位長度至D點,第4次從D點向左移動4個單位長度至E點,…,依此類推,經(jīng)過_____次移動后該點到原點的距離為2018個單位長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com