已知:如圖,O正方形ABCD的中心,BE平分∠DBC,交DC于點(diǎn)E,延長BC到點(diǎn)F,使CF=CE,連接DF,交BE的延長線于點(diǎn)G,連接OG.
(1)求證:△BCE≌△DCF;
(2)OG與BF有什么數(shù)量關(guān)系?證明你的結(jié)論;
(3)若GE•GB=4-2
2
,求正方形ABCD的面積.
(1)證明:在△BCE與△DCF中,
BC=DC
∠BCE=∠DCF=90°
CE=CF

∴△BCE≌△DCF.

(2)OG=
1
2
BF.
理由如下:∵△BCE≌△DCF,
∴∠CEB=∠F,
∵∠CEB=∠DEG,
∴∠F=∠DEG,
∵∠F+∠GDE=90°,
∴∠DEG+∠GDE=90°,
∴BG⊥DF,
∴∠BGD=∠BGF,
又∵BG=BG,∠DBG=∠FBG,
∴△BGD≌△BGF,
∴DG=GF,
∵O為正方形ABCD的中心,
∴DO=OB,
∴OG是△DBF的中位線,
∴OG=
1
2
BF.

(3)設(shè)BC=x,則DC=x,BD=
2
x

由(2)知,△BGF≌△BGD,
∴BF=BD,
∴CF=(
2
-1)x,
∵∠DGB=∠EGD,∠DBG=∠EDG,
∴△GDB△GED,
GD
GE
=
GB
GD
,
∴GD2=GE•GB=4-2
2

∵DC2+CF2=(2GD)2,
∴x2+(
2
-1)2x2=4(4-2
2
),
(4-2
2
)x2=4(4-2
2
),
x2=4,
正方形ABCD的面積是4個平方單位.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=
5
.下列結(jié)論:
①△APD≌△AEB;
②點(diǎn)B到直線AE的距離為
2
;
③EB⊥ED;
④S△APD+S△APB=1+
6

⑤S正方形ABCD=4+
6
.其中正確結(jié)論的序號是( 。
A.①③④B.①②⑤C.③④⑤D.①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:正方形ABCD中,對角線AC、BD相交于點(diǎn)O,∠BAC的平分線AF交BD于點(diǎn)E,交BC于點(diǎn)F,
求證:OE=
1
2
CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)F是正方形ABCD的邊BC的中點(diǎn),CG平分∠DCE,GF⊥AF.求證:AF=FG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

將兩個大小一樣的正方形ABCD和正方形CDEF如圖放置,點(diǎn)B、C、F在同一直線上,BF=12,再將一直角三角板的直角頂點(diǎn)放置在D點(diǎn)上,DP交AB于點(diǎn)M,DQ交BF于點(diǎn)N.
(1)求證:△DBM≌△DFN;
(2)將三角板DPQ的直角頂點(diǎn)繞點(diǎn)D旋轉(zhuǎn)時,四邊形DMBN的面積是否變化?如果不變,請簡要說明理由并求出它的面積;
(3)分別延長正方形的邊CB和邊EF,使它們的延長線分別與直角三角板的兩邊DP、DQ(或它們的延長線)交于點(diǎn)G和點(diǎn)H,試探究下列問題:
①線段BG與FH相等嗎?說明你的理由;
②當(dāng)線段FN的長是方程x2+x-12=0的一根時,試求出
NG
NH
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,E是正方形ABCD的邊CD延長線上的任意一點(diǎn),CF⊥AE于點(diǎn)F,交AD于點(diǎn)H.求∠DHE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時針旋轉(zhuǎn),它的兩邊分別交CB,DC(或它們的延長線)于點(diǎn)M,N.
(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(如圖1),求證:BM+DN=MN;
(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(如圖2),則線段BM,DN和MN之間數(shù)量關(guān)系是______;
(3)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時,猜想線段BM,DN和MN之間又有怎樣的數(shù)量關(guān)系呢?并對你的猜想加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

直角梯形ABCD中,∠A=∠D=90°,DC<AB,AB=AD=12,E是邊AD上的一點(diǎn),恰好使CE=10,并且∠CBE=45°,則AE的長是(  )
A.2或8B.4或6C.5D.3或7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖(1),點(diǎn)M,N分別在等邊△ABC的BC,AC邊上,且BM=CN,AM,BN交于點(diǎn)Q.求證:∠BQM=60°.
(2)判斷下列命題的真假性:
①若將題(1)中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題(1)中的點(diǎn)M,N分別移動到BC,CA的延長線上,是否仍能得到∠BQM=60°?(如圖2)
③若將題(1)中的條件“點(diǎn)M,N分別在正△ABC的BC,AC邊上”改為“點(diǎn)M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?(如圖3)
在下列橫線上填寫“是”或“否”:①______;②______;③______.并對②,③的判斷,選擇其中的一個給出證明.

查看答案和解析>>

同步練習(xí)冊答案