【題目】如圖,矩形ABCD中,AB=8,BC=12,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動時,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點(diǎn)時,請直接寫出DP滿足的條件: .
【答案】(1)見解析;(2)存在,滿足條件的x的值為6或;(3)DP=或10<DP≤12
【解析】
(1)根據(jù)矩形的性質(zhì),結(jié)合已知條件可以證明兩個角對應(yīng)相等,從而證明三角形相似;
(2)由于對應(yīng)關(guān)系不確定,所以應(yīng)針對不同的對應(yīng)關(guān)系分情況考慮:①當(dāng)∠PEF=∠EAB時,則得到四邊形ABEP為矩形,從而求得x的值;②當(dāng)∠PEF=∠AEB時,再結(jié)合(1)中的結(jié)論,得到等腰△APE.再根據(jù)等腰三角形的三線合一得到F是AE的中點(diǎn),運(yùn)用勾股定理和相似三角形的性質(zhì)進(jìn)行求解.
(3)首先計(jì)算圓D與線段相切時,x的值,在畫出圓D過E時,半徑r的值,確定x的值,半徑比這時大時符合題意,根據(jù)圖形確定x的取值范圍,從而得出DP的范圍.
(1)證明:∵矩形ABCD,
∴∠ABE=90°,AD∥BC,
∴∠PAF=∠AEB,
又∵PF⊥AE,
∴∠PFA=90°=∠ABE,
∴△PFA∽△ABE.
(2)解:分二種情況:
①若△EFP∽△ABE,如圖1,
則∠PEF=∠EAB,
∴PE∥AB,
∴四邊形ABEP為矩形,
∴PA=EB=6,即x=6.
②如圖2,若△PFE∽△ABE,
則∠PEF=∠AEB,
∵AD∥BC
∴∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴點(diǎn)F為AE的中點(diǎn),
Rt△ABE中,AB=8,BE=6,
∴AE===10,
∴EF=,
∵△PFE∽△ABE,
∴,
∴,
∴PE=,
∴滿足條件的x的值為6或.
(3)如圖3,當(dāng)⊙D與AE相切時,設(shè)切點(diǎn)為G,連接DG,
∵AP=x,
∴PD═DG=12﹣x,
∵∠DAG=∠AEB,∠AGD=∠B=90°,
∴△AGD∽△EBA,
∴,
∴,
∴x=,
∴,
當(dāng)⊙D過點(diǎn)E時,如圖4,⊙D與線段有兩個公共點(diǎn),連接DE,
此時PD=DE=10,
故答案為:DP=或10<DP≤12.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知∠ACB=90°,∠A=30°,BC=6,D為斜邊AB上一點(diǎn),以CD、CB為邊作平行四邊形CDEB,當(dāng)AD=_____時,平行四邊形CDEB為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠C=90°,AD⊥DB,點(diǎn)E為AB的中點(diǎn),DE∥BC.
(1)求證:BD平分∠ABC;
(2)連接EC,若∠A=30°,DC,求EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,點(diǎn)為上的一點(diǎn),在同側(cè)作正方形,正方形分別為對角線的中點(diǎn),連結(jié)當(dāng)點(diǎn)沿著線段由點(diǎn)向點(diǎn)方向上移動時,四邊形的面積變化情況為( )
A.不變B.先減小后增大
C.先增大后減小D.一直減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)在一次九年級數(shù)學(xué)做了檢測中,有一道滿分8分的解答題,按評分標(biāo)準(zhǔn),所有考生的得分只有四種:0分,3分,5分,8分.老師為了了解學(xué)生的得分情況與題目的難易情況,從全區(qū)4500名考生的試卷中隨機(jī)抽取一部分,通過分析與整理,繪制了如下兩幅圖不完整的統(tǒng)計(jì)圖.
請根據(jù)以上信息解答下列問題:
(1)填空:a= ,b= ,并把條形統(tǒng)計(jì)圖補(bǔ)全;
(2)請估計(jì)該地區(qū)此題得滿分(即8分)的學(xué)生人數(shù);
(3)已知難度系數(shù)的計(jì)算公式為L=,其中L為難度系數(shù),X為樣本平均得分,W為試題滿分值.一般來說,根據(jù)試題的難度系數(shù)可將試題分為以下三類:當(dāng)0<L≤0.4時,此題為難題;當(dāng)0.4<L≤0.7時,此題為中等難度試題;當(dāng)0.7<L<1時,此題為容易題.試問此題對于該地區(qū)的九年級學(xué)生來說屬于哪一類?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)游泳館夏季推出兩種收費(fèi)方式.方式一:先購買會員證,會員證200元,只限本人當(dāng)年使用,憑證游泳每次需另付費(fèi)10元:方式二:不購買會員證,每次游泳需付費(fèi)20元.
(1)若甲計(jì)劃今年夏季游泳的費(fèi)用為500元,則選擇哪種付費(fèi)方式游泳次數(shù)比較多?
(2)若乙計(jì)劃今年夏季游泳的次數(shù)超過15次,則選擇哪種付費(fèi)方式游泳花費(fèi)比較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從體育用品商店一次性購買若干個足球和籃球(每個足球的價(jià)格相同,每個籃球的價(jià)格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元。
(1)求購買一個足球、一個籃球各需多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需從體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費(fèi)用不超過5720元,這所中學(xué)最多可以購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=ax2+bx+c的對稱軸是x=﹣且經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)①直接寫出點(diǎn)B的坐標(biāo);②求拋物線解析式.
(2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連接PA,PC.求△PAC的面積的最大值,并求出此時點(diǎn)P的坐標(biāo).
(3)拋物線上有一點(diǎn)M,過點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似,直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x與函數(shù)y=(x>0)的圖象交于點(diǎn)A(1,2).
(1)求m的值;
(2)過點(diǎn)A作x軸的平行線l,直線y=2x+b與直線l交于點(diǎn)B,與函數(shù)y=(x>0)的圖象交于點(diǎn)C,與x軸交于點(diǎn)D.
①若點(diǎn)C是線段BD的中點(diǎn)時,則點(diǎn)C的坐標(biāo)是________,b的值是________;
②當(dāng)BC>BD時,直接寫出b的取值范圍________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com