【題目】如圖,已知Rt△ABO,點B在軸上,∠ABO=90°,∠AOB=30°,OB=,反比例函數的圖象經過OA的中點C,交AB于點D.
(1)求反比例函數的表達式;
(2)求△OCD的面積;
(3)點P是軸上的一個動點,請直接寫出使△OCP為直角三角形的點P坐標.
【答案】(1);(2)面積為;(3)P(2,0)或(4,0)
【解析】
(1)解直角三角形求得AB,作CE⊥OB于E,根據平行線分線段成比例定理和三角形中位線的性質求得C的坐標,然后根據待定系數法即可求得反比例函數的解析式;
(2)補形法,求出各點坐標,S△OCD =S△AOB-S△ACD- S△OBD;
(3)分兩種情形:①∠OPC=90°.②∠OCP=90°,分別求解即可.
解:(1)∵∠ABO=90°,∠AOB=30°,OB=,
∴AB= OB=2,
作CE⊥OB于E,
∵∠ABO=90°,
∴CE∥AB,
∴OC=AC,
∴OE=BE=OB=,CE=AB=1,
∴C(,1),
∵反比例函數(x>0)的圖象經過OA的中點C,
∴1=,∴k=,
∴反比例函數的關系式為;
(2)∵OB=,
∴D的橫坐標為,
代入得,y=,
∴D(,),
∴BD=,
∵AB=,
∴AD=,
∴S△OCD =S△AOB-S△ACD- S△OBD =OBAB-ADBE-BDOB=
(3)當∠OPC=90°時,點P的橫坐標與點C的橫坐標相等,C(2,2),
∴P(2,0).
當∠OCP=90°時.
∵C(2,2),
∴∠COB=45°.
∴△OCP為等腰直角三角形.
∴P(4,0).
綜上所述,點P的坐標為(2,0)或(4,0).
科目:初中數學 來源: 題型:
【題目】有四組家庭參加親子活動,A、B、C、D分別代表四個家長,他們的孩子分別是a、b、c、d,若主持人隨機從家長、孩子中各選擇一個,請你用樹狀圖或列表的方法求出選中的兩人剛好是同一個家庭的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于“去分母”可能產生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數學思想轉化,把未知轉化為已知.
用“轉化”的數學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉化”思想求方程的解;
(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級數學興趣小組為了測得該校地下停車場的限高CD,在課外活動時間測得下列數據:如圖,從地面E點測得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(與E點在同一個水平線)距停車場頂部C點(A、C、B在同一條直線上且與水平線垂直)2米.試求該校地下停車場的高度AC及限高CD(結果精確到0.1米,≈1.732).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數的圖象如圖所示,分析下列四個結論:①abc<0;②b2-4ac>0;③;④a+b+c<0.其中正確的結論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以點A為圓心2為半徑的圓上一點,連接BD,M為BD的中點,則線段CM長度的最小值為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數y=ax2+bx+c(a≠0)的頂點A(-3,0),與y軸交于點B(0,4),在第一象限內有一點P(m,n),且滿足4m+3n=12.
(1)求二次函數解析式.
(2)若以點P為圓心的圓與直線AB、x軸相切,求點P的坐標.
(3)若點A關于y軸的對稱點為點A′,點C在對稱軸上,且2∠CBA+∠PA′O=90.求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖甲是小張同學設計的帶圖案的花邊作品,該作品由形如圖乙的矩形圖案設計拼接面成(不重疊,無縫隙).圖乙中,點E、F、G、H分別為矩形AB、BC、CD、DA的中點,若AB=4,BC=6,則圖乙中陰影部分的面積為
_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了了解今年九年級學生的數學學習情況,在中考考前適應性訓練測試后,對九年級全體同學的數學成績作了統(tǒng)計分析,按照成績高低分為A、B、C、D四個等級并繪制了如圖1和圖2的統(tǒng)計圖(均不完整),請結合圖中所給出的信息解答問題:
(1)該校九年級學生共有 人.
(2)補全條形統(tǒng)計圖與扇形統(tǒng)計圖.(要求:請將扇形統(tǒng)計圖的空白部分按比例分成兩部分.)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com