【題目】如圖,A地和B地都是海上觀測(cè)站,B地在A地正東方向,且A、B兩地相距2海里. A地發(fā)現(xiàn)它的北偏東60°方向有一艘船C,同時(shí),從B地發(fā)現(xiàn)船C在它的北偏東30°方向.

1)在圖中畫(huà)出船C所在的位置;(要求用直尺與量角器作圖,保留作圖痕跡)

2)已知三角形的內(nèi)角和等于180°,求∠ACB的度數(shù).

3)此時(shí)船CB地相距______海里.(只需寫(xiě)出結(jié)果,不需說(shuō)明理由)

【答案】1)見(jiàn)解析;(2)∠ACB=30°;(22

【解析】

1)根據(jù)方向角的概念,分別過(guò)A、B作射線,兩條射線的交點(diǎn)即為船C的位置;

2)首先求出∠CAB和∠ABC的度數(shù),再根據(jù)三角形內(nèi)角和是180°求出∠ACB的度數(shù);

3)由(2)中得出∠ACB=30°可知△ABC為等腰三角形,所以BC=AB

1)如圖所示,C點(diǎn)即為船C所在的位置;

2)在△ABC中,

CAB=90°-60°=30°,∠ABC=90°+30°=120°

∵∠ACB+CAB+ABC=180°

∴∠ACB=180°-30°-120°=30°

3)∵∠ACB=CAB=30°

∴△ABC為等腰三角形

BC=AB=2海里

所以船CB地相距2海里,

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,∠ABC=60°,過(guò)點(diǎn)B作AC的平行線交DC的延長(zhǎng)線于點(diǎn)E.

(1) 求證:四邊形ABEC為菱形;

(2) 若AB=6,連接OE,求OE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二廣高速在益陽(yáng)境內(nèi)的建設(shè)正在緊張地進(jìn)行,現(xiàn)有大量的沙石需要運(yùn)輸.益安車(chē)隊(duì)有載重量為8噸、10噸的卡車(chē)共12輛,全部車(chē)輛運(yùn)輸一次能運(yùn)輸110噸沙石.

1)求益安車(chē)隊(duì)載重量為8噸、10噸的卡車(chē)各有多少輛?

2)隨著工程的進(jìn)展,益安車(chē)隊(duì)需要一次運(yùn)輸沙石165噸以上,為了完成任務(wù),準(zhǔn)備新增購(gòu)這兩種卡車(chē)共6輛,車(chē)隊(duì)有多少種購(gòu)買(mǎi)方案,請(qǐng)你一一寫(xiě)出.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測(cè)站O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離(即AB的長(zhǎng))為( 。

A. 3km B. 3km C. 4km D. (3-3)km

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,完成系列問(wèn)題:

1A、C兩點(diǎn)間的距離是多少?

2)在數(shù)軸上找到點(diǎn)D,使點(diǎn)DB、C兩點(diǎn)的距離相等;并在數(shù)軸上標(biāo)出點(diǎn)D表示的數(shù).

3)若點(diǎn)EB點(diǎn)的距離是5,求點(diǎn)E表示的數(shù)是什么?

4)若點(diǎn)FA點(diǎn)的距離是aa>0),直接寫(xiě)出點(diǎn)F表示的數(shù)是多少?(用字母a表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人利用不同的交通工具,沿同一路線從A地出發(fā)前往B地,他們行進(jìn)的路程ykm)與甲出發(fā)后的時(shí)間xh)的函數(shù)圖象如圖所示.

1)甲的速度是   y/km;

2)當(dāng)1≤x≤5時(shí),求乙行進(jìn)的路程ykm)關(guān)于xh)的函數(shù)解析式;

3)求乙出發(fā)多長(zhǎng)時(shí)間遇到了甲.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD和正方形CEFG如圖1所示,其中B、C、E在一條直線上,OAF的中點(diǎn),連接OD、OG

(1)探究ODOG的位置關(guān)系的值;(寫(xiě)出結(jié)論不用證明)

(2)如圖2所示,將正方形ABCD和正方形CEFG改為菱形ABCD和菱形CEFG,且∠ABC=DCE=120°,探究ODOG的位置關(guān)系,的比值;

(3)拓展探索:把圖1中的正方形CEFGC順時(shí)針旋轉(zhuǎn)小于90°的角后,其他條件均不變,問(wèn)第1問(wèn)中的兩個(gè)結(jié)論是否發(fā)生變化?(寫(xiě)出結(jié)論不用證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為一副重疊放置的三角板,其中∠ABC=∠EDF=90°,BCDF共線,將△DEF沿CB方向平移,當(dāng)EF經(jīng)過(guò)AC的中點(diǎn)O時(shí),直線EFAB于點(diǎn)G,BC=3,則此時(shí)OG的長(zhǎng)度為(

A. 3B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線 y=kx+bx 軸、y 軸相交干A(6,0),B(0,3)兩點(diǎn),動(dòng)點(diǎn)C在線段OA,將線段CB 繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到CD,此時(shí)點(diǎn)D恰好落在直線AB,過(guò)點(diǎn)D DEx 軸于點(diǎn)E

(1)求直線y=kx+b 的表達(dá)式及點(diǎn)D 的坐標(biāo);

(2)若點(diǎn)Py 軸上,點(diǎn)Q在直線AB,是否存在以C、D、P、Q 為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出所有滿足條件的Q 點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案