【題目】如圖,在Rt△ABC中,∠C=90°,O為AB邊上一點,⊙O交AB于點E,F(xiàn)兩點,BC切⊙O于點D,且CD=EF=1,
(1)求證:AC與⊙O相切;
(2)求圖中陰影部分的面積.
【答案】(1)見解析;(2)1﹣π.
【解析】試題分析:
(1)連接OD,過點O作OH⊥AC于點H,易證四邊形ODCH是矩形,由此可得OH=CD=EF=OE,從而可得AC是⊙O的切線;
(2)由(1)可知∠DOH=90°,OH=EF=1,由此根據(jù):S陰影=S正方形ODCH-S扇形ODH即可計算出陰影部分的面積.
試題解析:
(1)連接OD,過點O作OH⊥AC于點H,
∵BC是⊙O的切線,
∴OD⊥BC.
∵∠C=90°,
∴∠OHC=∠ODC=∠C=90°,
∴四邊形OHCD是矩形.
∵CD=EF,
∴OH=EF=OE.
∵OH⊥AC,
∴AC是⊙O的切線;
(2)由(1)可知,四邊形ODCH是正方形,
∴∠DOH=90°,OH=CD=EF=1,
∴S陰影=S正方形ODCH-S扇形ODH=1×1﹣=1﹣π.
科目:初中數(shù)學 來源: 題型:
【題目】某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售如下:
每人銷售件數(shù) | 1800 | 510 | 250 | 210 | 150 | 120 |
人數(shù) | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù).
(2)假設銷售部負責人把每位營銷員的月銷售額定為320件,你認為是否合理?為什么?如不合理,請你制定一個合理的銷售定額,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的面積為16cm2,△AEF為等腰直角三角形,∠E=90°,AE和BC交于點G,AF和CD交于點H,則△CGH的周長( )
A. 4cmB. 6cmC. 8cmD. 10cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(shù)y= (x>0)的圖象與邊長是6的正方形OABC的兩邊AB,BC分別相交于M,N 兩點,△OMN的面積為10.若動點P在x軸上,則PM+PN的最小值是( )
A. 6 B. 10 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A是雙曲線與直線在第二象限的交點,AB垂直軸于點B,且S△ABO=.
(1)求兩個函數(shù)的表達式;
(2)求直線與雙曲線的交點坐標和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉行研學旅行活動,車上準備了7箱礦泉水,每箱的瓶數(shù)相同,到達目的地后,先從車上搬下3箱,發(fā)給每位同學1瓶礦泉水,有9位同學未領到.接著又從車上搬下4箱,繼續(xù)分發(fā),最后每位同學都有2瓶礦泉水,還剩下6瓶.問:有多少人參加此次研學旅行活動?每箱礦泉水有多少瓶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,點O是AC邊上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.
(1)判斷OE與OF的大小關系?并說明理由?
(2)當點O運動何處時,四邊形AECF是矩形?并說出你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋中裝有5個黃球、13個黑球和22個紅球,這些球除顏色外其他都相同.
(1)求從袋中摸出一個球是黃球的概率;
(2)求從袋中摸出一個球不是紅球的概率;
(3)現(xiàn)在從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后,若從袋中摸出一個球是黃球的概率為,則取出了多少個黑球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個平面直角坐標系.
(1)請在圖中描出以下6個點:A(0,2)、B(4,2)、C(3,4)A′(-4,-4)、B'(0,-4)、C′(-1,-2)
(2)分別順次連接A、B、C和A′、B'、C',得到三角形ABC和三角形A′B′C′;
(3)觀察所畫的圖形,判斷三角形A′B′C′能否由三角形ABC平移得到,如果能,請說出三角形A′B′C′是由三角形ABC怎樣平移得到的;如果不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com