【題目】如我們把函數(shù)沿軸翻折得到函數(shù),函數(shù)與函數(shù)的圖象合起來組成函數(shù)的圖象.若直線與函數(shù)的圖象剛好有兩個交點,則滿足條件的的值可以為_______________(填出一個合理的值即可).
【答案】(答案不唯一,滿足k的取值范圍即可)
【解析】
根據(jù)題意,畫出圖象,求出函數(shù),根據(jù)題意和圖象可知直線與y1和y2各有一個交點,然后聯(lián)立方程求出交點的橫坐標(biāo),再根據(jù)x的取值范圍即可求出結(jié)論.
解:根據(jù)題意,畫出如下圖形
函數(shù)沿軸翻折得到函數(shù)解析式為
由圖可知:若直線與函數(shù)的圖象剛好有兩個交點,
則直線與y1和y2各有一個交點
聯(lián)立①和②
解①,得x1=k+3,x2=0(不符合取值范圍,舍去);解②,得x3=k-3,x4=0(不符合取值范圍,舍去)
①中,x>0,即k+3>0,②中,x<0,即k-3<0
∴-3<k<3
∴滿足條件的的值可以為(答案不唯一,滿足k的取值范圍即可).
故答案為:(答案不唯一,滿足k的取值范圍即可).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,與交于點,與軸交于點,軸于點,且.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)根據(jù)圖像直接寫出的的取值范圍;
(3)點為反比例函數(shù)圖象上使得四邊形為菱形的一點,點為軸上的一動點,當(dāng)最大時,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,點、同時從點出發(fā),以的速度分別沿、勻速運動,當(dāng)點到達(dá)點時,兩點同時停止運動,設(shè)運動時間為.過點作的垂線交于點,點與點關(guān)于直線對稱.
(1)當(dāng)_____時,點在的平分線上;
(2)當(dāng)_____時,點在邊上;
(3)設(shè)與重合部分的面積為,求與之間的函數(shù)關(guān)系式,并寫的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+b經(jīng)過點A(0,2),B(﹣4,0)和拋物線y=x2.
(1)求直線的解析式;
(2)將拋物線y=x2沿著x軸向右平移,平移后的拋物線對稱軸左側(cè)部分與y軸交于點C,對稱軸右側(cè)部分拋物線與直線y=kx+b交于點D,連接CD,當(dāng)CD∥x軸時,求平移后得到的拋物線的解析式;
(3)在(2)的條件下,平移后得到的拋物線的對稱軸與x軸交于點E,P為該拋物線上一動點,過點P作拋物線對稱軸的垂線,垂足為Q,是否存在這樣的點P,使以點E,P,Q為頂點的三角形與△AOB相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片,是的中點,是上一動點,沿折疊,點落在點處;延長交于點,連接.
(1)求證:≌;
(2)當(dāng)時,將沿折疊,點落在線段上點處.
①求證:∽;
②如果,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x與反比例函數(shù)y=(x>0)的圖象相交于點D,點A為直線y=x上一點,過點A作AC⊥x軸于點C,交反比例函數(shù)y=(x>0)的圖象于點B,連接BD.
(1)若點B的坐標(biāo)為(8,2),則k= ,點D的坐標(biāo)為 ;
(2)若AB=2BC,且△OAC的面積為18,求k的值及△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在中,以邊為直徑的交于點,在劣弧上取一點使,延長依次交于點,交于.
(1)求證:;
(2)若,的直徑等于10,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩地相距車和車分別從甲地和乙地同時出發(fā),相向而行,沿同一 條公路駛往乙地和甲地后,車因臨時需要,返回到這條公路上的丙地取物,然后又立即趕往乙地,結(jié)果比車晚到達(dá)目的地.兩車的速度始終保持不變,如圖是兩車距各自出 發(fā)地的路程(單位:),(單位:)與 車出發(fā)時間(單位:)的函數(shù)圖象,請結(jié)合圖象信息解答下列問題:
(1)A車的速度為 車的速度為
(2)求甲、丙兩地的距離;
(3)求車出發(fā)多長時間,兩車相距
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com