【題目】希臘數學家丟番圖(公元3-4世紀)的墓碑上記載著: “他生命的六分之一是幸福的童年;再活了他生命的十二分之一,兩頰長起了細細的胡須;他結了婚,又度過了一生的七分之一;再過五年,他有了兒子,感到很幸福;可是兒子只活了他父親全部年齡的一半;兒子死后,他在極度悲痛中度過了四年,也與世長辭了.”
根據以上信息,請你算出:
(1)丟番圖的壽命;
(2)丟番圖開始當爸爸時的年齡;
(3)兒子死時丟番圖的年齡.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,如果 x 與 y 都是整數,就稱點(x,y)為整點.下列命題中錯誤的是( )
A. 存在這樣的直線,既不與坐標軸平行,又不經過任何整點
B. 若 k 與 b 都是無理數,則直線 y=kx+b 不經過任何整點
C. 若直線 y=kx+b 經過無數多個整點,則 k 與 b 都是有理數
D. 存在恰好經過一個整點的直線
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一條直線上依次有A、B、C三個海島,某海巡船從A島出發(fā)沿直線勻速經B 島駛向C島,執(zhí)行海巡任務,最終達到C島.設該海巡船行駛x(h)后,與B港的距離為y(km),y與x的函數關系如圖所示.
(1)填空:A、C兩港口間的距離為 km, ;
(2)求y與x的函數關系式,并請解釋圖中點P的坐標所表示的實際意義;
(3)在B島有一不間斷發(fā)射信號的信號發(fā)射臺,發(fā)射的信號覆蓋半徑為15km,求該海巡船能接受到該信號的時間有多長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=2,BC=1,運點P從點B出發(fā),沿路線BCD作勻速運動,那么△ABP的面積與點P運動的路程之間的函數圖象大致是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經過點A(1,0),
B(3,2).
(1)求m的值和拋物線的解析式;
(2)求不等式x2+bx+c>x+m的解集.(直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】列方程(組)及不等式(組)解應用題:
水是生命之源.為了鼓勵市民節(jié)約用水,江夏區(qū)水務部門實行居民用水階梯式計量水價政策;若居民每戶每月用水量不超過10立方米,每立方米按現行居民生活用水水價收費(現行居民生活用水水價=基本水價+污水處理費);若每戶每月用水量超過10立方米,則超過部分每立方米在基本水價基礎上加價100%,但每立方米污水處理費不變.
下面表格是某居民小區(qū)4月份甲、乙兩戶居民生活用水量及繳納生活用水水費的情況統(tǒng)計:
4月份居民用水情況統(tǒng)計表
(注:污水處理的立方數=實際生活用水的立方數)
用水量(立方米) | 繳納生活用水費用(元) | |
甲用戶 | 8 | 27.6 |
乙用戶 | 12 | 46.3 |
(1)求每立方米的基本水價和每立方米的污水處理費各是多少?
(2)設這個小區(qū)某居民用戶5月份用水立方米,需要繳納的生活用水水費為元.若他5月份生活用水水費計劃不超過64元,該用戶5月份最多可用水多少立方米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某社區(qū)超市第一次用6000元購進甲、乙兩種商品,其中乙商品的件數比甲商品件數的倍多15件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 22 | 30 |
售價(元/件) | 29 | 40 |
(1)該超市購進甲、乙兩種商品各多少件?
(2)該超市將第一次購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
(3)該超市第二次以第一次的進價又購進甲、乙兩種商品,其中甲商品的件數不變,乙商品的件數是第一次的3倍;甲商品按原價銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤比第一次獲得的總利潤多180元,求第二次乙商品是按原價打幾折銷售?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“知識改變命運,科技繁榮祖國”.我市中小學每年都要舉辦一屆科技運動會.下圖為我市某校2009年參加科技運動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數統(tǒng)計圖:
(1)該校參加車模、建模比賽的人數分別是 人和 人;
(2)該校參加航模比賽的總人數是 人,空模所在扇形的圓心角的度數是 °,并把條形統(tǒng)計圖補充完整;(溫馨提示:作圖時別忘了用0.5毫米及以上的黑色簽字筆涂黑)
(3)從全市中小學參加航模比賽選手中隨機抽取80人,其中有32人獲獎.今年我市中小學參加航模比賽人數共有2485人,請你估算今年參加航模比賽的獲獎人數約是多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論:(1)4a+b=0;(2)9a+c>﹣3b;(3)7a﹣3b+2c>0;(4)若點A(﹣3,y1)、點B(﹣,y2)、點C(7,y3)在該函數圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com