【題目】如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個交點.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)觀察圖象,直接寫出方程kx+b-=0的解;
(3)觀察圖象,直接寫出不等式kx+b-<0的解集;
(4)求△AOB的面積.
【答案】(1)反比例函數(shù)的解析式為y=- ,一次函數(shù)的解析式為y=-x-2;(2)方程kx+b-=0的解是x1=-4,x2=2;(3)-4<x<0或x>2.(4)6.
【解析】
(1)把B (2,-4)代入反比例函數(shù)y=得出m的值,再把A(-4,n)代入一次函數(shù)的解析式y=kx+b,運用待定系數(shù)法分別求其解析式;(2)經(jīng)過觀察可發(fā)現(xiàn)所求方程的解應為所給函數(shù)的兩個交點的橫坐標;(3)觀察函數(shù)圖象得到當-4<x<0或x>2時,一次函數(shù)的圖象在反比例函數(shù)圖象下方,即使kx+b-<0;(4)設(shè)直線AB與y軸交于點C,把三角形AOB的面積看成是三角形AOC和三角形OCB的面積之和進行計算.
解:(1)∵B(2,-4)在y=上,
∴m=-8.
∴反比例函數(shù)的解析式為y=-.
∵點A(-4,n)在y=-上,
∴n=2.
∴A(-4,2).
∵y=kx+b經(jīng)過A(-4,2),B(2,-4),
∴
解得:
∴一次函數(shù)的解析式為y=-x-2.
(2)∵A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點,
∴方程kx+b-=0的解是x1=-4,x2=2.
(3)不等式kx+b-<0的解集為-4<x<0或x>2.
設(shè)一次函數(shù)y=-x-2的圖象與y軸交于C點,
(4)當x=0時,y=-2,
∴點C(0,-2).
∴OC=2,
∴S△AOB=S△ACO+S△BCO=×2×4+×2×2=6.
科目:初中數(shù)學 來源: 題型:
【題目】“只要人人獻出一點愛,世界將變成美好的人間”.某大學利用“世界獻血日”開展自愿義務獻血活動,經(jīng)過檢測,獻血者血型有“A、B、AB、O”四種類型,隨機抽取部分獻血結(jié)果進行統(tǒng)計,根據(jù)結(jié)果制作了如圖兩幅不完整統(tǒng)計圖表(表,圖):
血型統(tǒng)計表
血型 | A | B | AB | O |
人數(shù) |
| 10 | 5 |
|
(1)本次隨機抽取獻血者人數(shù)為 人,圖中m= ;
(2)補全表中的數(shù)據(jù);
(3)若這次活動中該校有1300人義務獻血,估計大約有多少人是A型血?
(4)現(xiàn)有4個自愿獻血者,2人為O型,1人為A型,1人為B型,若在4人中隨機挑選2人,利用樹狀圖或列表法求兩人血型均為O型的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結(jié)論:
①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1,
其中正確的是( )
A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB =xm,花園面積S.
(1)求S關(guān)于x的函數(shù)關(guān)系式,求x的取值范圍;
(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)y=的圖象如圖所示,A,P為該圖象上的點,且關(guān)于原點成中心對稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點B.若△PAB的面積大于12,則關(guān)于x的方程(a-1)x2-x+=0的根的情況是________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,雙曲線:和直線:交于點A(2,1);
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】節(jié)能又環(huán)保的油電混合動力汽車,既可以用油做動力行駛,也可以用電做動力行駛,某品牌油電混合動力汽車從甲地行駛到乙地,若完全用油做動力行駛,則費用為80元;若完全用電做動力行駛,則費用為30元,已知汽車行駛中每千米用油費用比用電費用多0.5元.
(1)求:汽車行駛中每千米用電費用是多少元?甲、乙兩地的距離是多少千米?
(2)若汽車從甲地到乙地采用油電混合動力行駛,且所需費用不超過50元,則至少需要用電行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某精品店購進甲、乙兩種小禮品,已知1件甲禮品的進價比1件乙禮品的進價多1元,購進2件甲禮品與1件乙禮品共需11元.
(1)求甲禮品的進價;
(2)經(jīng)市場調(diào)查發(fā)現(xiàn),若甲禮品按6元/件銷售,則每天可賣40件;若按5元/件銷售,則每天可賣60件.假設(shè)每天銷售的件數(shù)y(件)與售價x(元/件)之間滿足一次函數(shù)關(guān)系,求y與x之間的函數(shù)解析式;
(3)在(2)的條件下,當甲禮品的售價定為多少時,才能使每天銷售甲禮品的利潤為60元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于⊙P及一個矩形給出如下定義:如果⊙P上存在到此矩形四個頂點距離都相等的點,那么稱⊙P是該矩形的“等距圓”.如圖,在平面直角坐標系xOy中,矩形ABCD的頂點A的坐標為(,),頂點C、D在x軸上,且OC=OD.
(1)當⊙P的半徑為4時,
①在P1(,),P2(,),P3(,)中可以成為矩形ABCD的“等距圓”的圓心的是 ;
②如果點P在直線上,且⊙P是矩形ABCD的“等距圓”,求點P的坐標;
(2)已知點P在軸上,且⊙P是矩形ABCD的“等距圓”,如果⊙P與直線AD沒有公共點,直接寫出點P的縱坐標m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com