【題目】已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點(diǎn)A(1,0),頂點(diǎn)為 B,且拋物線不過第三象限.

(1)過點(diǎn)B作直線l垂直于x軸于點(diǎn)C,若點(diǎn)C坐標(biāo)為(2,0),a=1,求b和c的值;

(2)比較與0的大小,并說明理由;

(3)若直線y2=2x+m經(jīng)過點(diǎn)B,且與拋物線交于另外一點(diǎn)D(,b+8),求當(dāng)≤x<5時(shí)y1的取值范圍.

【答案】(1)b=﹣4,c=3;(2)<0;(3)>y1≥﹣2

【解析】

拋物線y1=ax2+bx+c(a≠0,a≠c),經(jīng)過A(1,0),拋物線不過第三象限,則a>0,把點(diǎn)A坐標(biāo)代入函數(shù),即可得到:b=-a-c;

(1)由題意得:函數(shù)對(duì)稱軸是x=2=,而a=1、b=-a-c,解得:b=-4,c=3;

(2)由拋物線開口向上,且過點(diǎn)A,知:頂點(diǎn)在x軸下方,即:<0;

(3)由韋達(dá)定理得:x2=,而D坐標(biāo)是(,b+8),故:b+8=0,即b=-8,求函數(shù)表達(dá)式即可求解.

解:∵拋物線 y1=ax2+bx+c(a≠0,a≠c),經(jīng)過 A(1,0),拋物線不過第三象限,則 a>0,

把點(diǎn)代入函數(shù)即可得到:b=﹣a﹣c;

由題意得:函數(shù)對(duì)稱軸是 x=2=,而 a=1、b=﹣a﹣c, 解得:b=﹣4,c=3;

由拋物線開口向上,且過點(diǎn) A,知:頂點(diǎn)在 x 軸下方, 即:<0;

由韋達(dá)定理得:

x1+x2= ,x1x2= ,

其中 x1=1,則 x2=,而 D 坐標(biāo)是(,b+8),故:b+8=0,即 b=﹣8,

a+c=﹣b,a+c=8…,

B、C 兩點(diǎn)代入直線解析式易得:c﹣a=4…, 聯(lián)立①、②并求解得:a=2,c=6

函數(shù)表達(dá)式為:y=2x2﹣8x+6,

A、B、C 點(diǎn)的坐標(biāo)分別為(1,0)、(2,﹣2)、(3,0).

當(dāng)≤x<5 時(shí),y1 的取值范圍為:>y1≥﹣2,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+cx軸交于A(1,0),B(3,0),與y軸交于C(0,3),拋物線頂點(diǎn)為D點(diǎn).

(1)求此拋物線解析式;

(2)如圖1,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在對(duì)稱軸右側(cè),若△ADP面積為3,求點(diǎn)P的坐標(biāo);

(3)(2)的條件下,PA交對(duì)稱軸于點(diǎn)E,如圖2,過E點(diǎn)的任一條直線與拋物線交于M,N兩點(diǎn),直線MD交直線y=﹣3于點(diǎn)F,連結(jié)NF,求證:NF∥y軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)在一個(gè)寬度為w的小巷內(nèi),一個(gè)梯子長為a,梯子的腳位于A點(diǎn),將梯子的頂端放在一堵墻上Q點(diǎn)時(shí),Q離開地面的高度為k,梯子與地面的夾角為45°:將該梯子的頂端放在另一堵墻上R點(diǎn)時(shí),R點(diǎn)離開地面的高度為h,且此時(shí)梯子與地面的夾角為75°,則小巷寬度w=

A.hB.kC.aD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,中,,且

1)試說明是等腰三角形;

2)已知,如圖2,動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒的速度沿線段向點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā)以相同速度沿線段向點(diǎn)運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為(秒)

①若的邊于平行,求的值;

②若點(diǎn)是邊的中點(diǎn),問在點(diǎn)運(yùn)動(dòng)的過程中,能否成為等腰三角形?若能,求出的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B、C三地在同一直線上,甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)2小時(shí),甲車到達(dá)B地后立即調(diào)頭,并將速度提高10%后與乙車同向行駛,乙車到達(dá)A地后,繼續(xù)保持原速向遠(yuǎn)離B的方向行駛,經(jīng)過一段時(shí)間后兩車同時(shí)到達(dá)C地,設(shè)兩車之間的距離為y(千米),甲行駛的時(shí)間x(小時(shí)).yx的關(guān)系如圖所示,則B、C兩地相距_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=ax+223y2=x32+1交于點(diǎn)A13),過點(diǎn)Ax軸的平行線,分別交兩條拋物線于點(diǎn)BC.則以下結(jié)論:

①無論x取何值,y2的值總是正數(shù);

a=1;

③當(dāng)x=0時(shí),y2﹣y1=4

2AB=3AC

其中正確結(jié)論是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是菱形外一點(diǎn),DEAC,CEBD

1)求證:四邊形DECO是矩形;

2)連接AEBD于點(diǎn)F,當(dāng)∠ADB30°,DE3時(shí),求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB經(jīng)過點(diǎn)O,CD是弦,且CDAB于點(diǎn)F,連接AD,過點(diǎn)B的直線與線段AD的延長線交于點(diǎn)E,且∠E=ACF.

(1)CD=2, AF=3,求⊙O的周長;

(2)求證:直線BE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對(duì)角線AC

重合,點(diǎn)B落在點(diǎn)F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

同步練習(xí)冊(cè)答案