【題目】CD經(jīng)過∠BCA頂點C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點,且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請解決下面兩個問題:
①如圖1,若∠BCA=90°,∠α=90°,則BE_____CF;EF_____|BE﹣AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關(guān)于∠α與∠BCA關(guān)系的條件_____,使①中的兩個結(jié)論仍然成立。
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想并給出理由。.
【答案】==∠α+∠BCA=180°
【解析】
(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可;
②求出∠BEC=∠AFC,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可;
(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可.
(1)①如圖1中,
E點在F點的左側(cè),
∵BE⊥CD,AF⊥CD,∠ACB=90,
∴∠BEC=∠AFC=90,
∴∠BCE+∠ACF=90,∠CBE+∠BCE=90,
∴∠CBE=∠ACF,
在△BCE和△CAF中,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CFCE=BEAF,
當E在F的右側(cè)時,同理可證EF=AFBE,
∴EF=|BEAF|;
故答案為=,=.
②時,①中兩個結(jié)論仍然成立;
證明:如圖2中,
∵
∴∠CBE=∠ACF,
在△BCE和△CAF中,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CFCE=BEAF,
當E在F的右側(cè)時,同理可證EF=AFBE,
∴EF=|BEAF|;
故答案為
(2)EF=BE+AF.
理由是:如圖3中,
∵∠BEC=∠CFA=∠a,∠a=∠BCA,
又∵
∴∠EBC+∠BCE=∠BCE+∠ACF,
∴∠EBC=∠ACF,
在△BEC和△CFA中,
∴△BEC≌△CFA(AAS),
∴AF=CE,BE=CF,
∵EF=CE+CF,
∴EF=BE+AF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△OBA,∠ABO=30°,OA=2,兩條直角邊重疊在互相的垂直的兩條直線上,線段PQ的端點P從點O出發(fā),沿△OBA的邊按O→B→A→O運動一周,同時另一端點Q隨之在直線AO上運動,如果PQ=,那么當點P運動一周時,點Q運動的總路程為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,AC=12,BC=8,將△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△DEC.若點F是DE的中點,連接AF,則AF= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明同學在學習了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是( 。
A. 角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上
B. 角平分線上的點到這個角兩邊的距離相等
C. 三角形三條角平分線的交點到三條邊的距離相等
D. 三角形三條垂直平分線的交點到三個定點的距離相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,BC=2AD,點F、G分別是邊BC、CD的中點,連接AF、FG,過點D作DE∥FG交AF于點E.
(1)求證:△AED≌△CGF;
(2)若梯形ABCD為直角梯形,∠B=90°,判斷四邊形DEFG是什么特殊四邊形?并證明你的結(jié)論;
(3)若梯形ABCD的面積為a(平方單位),則四邊形DEFG的面積為(平方單位).(只寫結(jié)果,不必說理)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,AB=AC,點D為AC上一點,且AD=BD=BC,則等腰三角形ABC的頂角度數(shù)為__________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知雙曲線y=(k<0)經(jīng)過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(﹣8,4),則△AOC的面積為( )
A. 6 B. 12 C. 18 D. 24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠C=90°,D為AC上一點,連接BD,將線段BD繞點D順時針旋轉(zhuǎn)90°得到線段DE,DE與AB相交于點F,過點D作DG⊥AB,垂足為點G.若EF=5,CD=2 ,則△BDG的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com