【題目】如圖,網(wǎng)格線的交點(diǎn)叫格點(diǎn),格點(diǎn)P是∠AOB的邊OB上的一點(diǎn)(請(qǐng)利用網(wǎng)格作圖,保留作圖痕跡).
(1)過(guò)點(diǎn)P畫OB的垂線,交OA于點(diǎn)C;
(2)線段的長(zhǎng)度是點(diǎn)O到PC的距離;
(3)PC<OC的理由是;
(4)過(guò)點(diǎn)C畫OB的平行線.

【答案】
(1)解:如圖,點(diǎn)C即為所求


(2)OP
(3)垂線段最短
(4)解:如圖,OE∥OB.


【解析】解:(2)∵OP⊥PC, ∴線段OP的長(zhǎng)度是點(diǎn)O到PC的距離.
所以答案是:OP;
3)∵PC⊥OB,
∴PC<OC.
所以答案是:垂線段最短;
【考點(diǎn)精析】關(guān)于本題考查的點(diǎn)到直線的距離和平行線的性質(zhì),需要了解從直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度叫做點(diǎn)到直線的距離;兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ)才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.

(1)求證:DEF是等腰三角形;

(2)當(dāng)∠A=40°時(shí),求∠DEF的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)蓚(gè)相似多邊形的面積之比為1:9,則它們的周長(zhǎng)之比為( 。
A.1:3
B.1:9
C.1:3
D.2:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(﹣1,﹣3)和點(diǎn)B(3,m),且AB平行于x軸,則點(diǎn)B坐標(biāo)為( 。

A. (3,﹣3) B. (3,3) C. (3,1) D. (3,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若兩個(gè)相似多邊形的面積比是16:25,則它們的周長(zhǎng)比等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由一些大小相同,棱長(zhǎng)為1的小正方體搭成的幾何體的俯視圖如圖所示,數(shù)字表示該位置的正方體個(gè)數(shù).
(1)請(qǐng)畫出它的主視圖和左視圖;
(2)給這個(gè)幾何體噴上顏色(底面不噴色),需要噴色的面積為
(3)在不改變主視圖和俯視圖的情況下,最多可添加塊小正方體.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD是平行四邊形,點(diǎn)E是邊CD上一點(diǎn)BC=EC,CF⊥BEAB于點(diǎn)F,PEB延長(zhǎng)線上一點(diǎn),下列結(jié)論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正確結(jié)論的個(gè)數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】母親節(jié)前期,某花店購(gòu)進(jìn)康乃馨和玫瑰兩種鮮花,銷售過(guò)程中發(fā)現(xiàn)康乃馨比玫瑰銷售量大,店主決定將玫瑰每枝降價(jià)1元促銷,降價(jià)后30元可購(gòu)買玫瑰的數(shù)量是原來(lái)購(gòu)買玫瑰數(shù)量的1.5倍.

(1)求降價(jià)后每枝玫瑰的售價(jià)是多少元?

(2)根據(jù)銷售情況,店主用不多于900元的資金再次購(gòu)進(jìn)兩種鮮花共500枝,康乃馨進(jìn)價(jià)為2/枝,玫瑰進(jìn)價(jià)為1.5/枝,問(wèn)至少購(gòu)進(jìn)玫瑰多少枝?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,∠BOD=45°,按下列要求畫圖并回答問(wèn)題:
(1)利用三角尺,在直線AB上方畫射線OE,使OE⊥AB;
(2)利用圓規(guī),分別在射線OA、OE上截取線段OM、ON,使OM=ON,連接MN;
(3)利用量角器,畫∠AOD的平分線OF交MN于點(diǎn)F;
(4)直接寫出∠COF=°.

查看答案和解析>>

同步練習(xí)冊(cè)答案