【題目】如圖,∠BAP+∠APD=180°,∠1=∠2,求證:∠E=∠F.
【答案】見(jiàn)解析.
證明:∵∠BAP+∠APD=180°(已知),
∴AB∥CD(同旁?xún)?nèi)角互補(bǔ),兩直線平行),
∴∠BAP=∠APC(兩直線平行,內(nèi)錯(cuò)角相等),
又∵∠1=∠2(已知),
∴∠FPA=∠EAP,
∴AE∥PF(內(nèi)錯(cuò)角相等,兩直線平行),
∴∠E=∠F(兩直線平行,內(nèi)錯(cuò)角相等).
【解析】
試題由 ∠BAP+∠APD = 180°,可得 AB∥CD,從而有 ∠BAP =∠APC,再根據(jù) ∠1 =∠2,從而可得∠EAP =∠APF,得到 AE∥FP,繼而得 ∠E =∠F.
試題解析:∵ ∠BAP+∠APD = 180°,
∴ AB∥CD,
∴ ∠BAP =∠APC,
又∵ ∠1 =∠2,
∴ ∠BAP∠1 =∠APC∠2,
即∠EAP =∠APF,
∴ AE∥FP,
∴ ∠E =∠F.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)實(shí)施的“一帶一路”戰(zhàn)略方針,惠及沿途各國(guó).中歐班列也已融入其中.從我國(guó)重慶開(kāi)往德國(guó)的杜伊斯堡班列,全程約11025千米.同樣的貨物,若用輪船運(yùn)輸,水路路程是鐵路路程的1.6倍,水路所用天數(shù)是鐵路所用天數(shù)的3倍,列車(chē)平均日速(平均每日行駛的千米數(shù))是輪船平均日速的2倍少49千米.分別求出列車(chē)及輪船的平均日速.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,且EH=EB.下列四個(gè)結(jié)論:①∠ABC=45°;②AH=BC;③BE+CH=AE;④△AEC是等腰直角三角形.你認(rèn)為正確的序號(hào)是( )
A. ①②③ B. ①③④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,點(diǎn)D為AB邊上的一動(dòng)點(diǎn)(D不與A、B重合),過(guò)D作DE∥BC,交AC于點(diǎn)E.把△ADE沿直線DE折疊,點(diǎn)A落在點(diǎn)A′處.連接BA′,設(shè)AD=x,△ADE的邊DE上的高為y.
(1)求出y與x的函數(shù)關(guān)系式;
(2)若以點(diǎn)A′、B、D為頂點(diǎn)的三角形與△ABC 相似,求x的值;
(3)當(dāng)x取何值時(shí),△A′DB是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的頂點(diǎn)A(﹣2,3),B(﹣3,1),C(0,1),規(guī)定“平行四邊形ABCD先沿x軸翻折,再向左平移1個(gè)單位”為一次變換,則連續(xù)經(jīng)過(guò)2017次變換后,平行四邊形ABCD的對(duì)角線的交點(diǎn)M的坐標(biāo)為( )
A.(﹣2017,2)
B.(﹣2017,﹣2)
C.(﹣2018,﹣2)
D.(﹣2018,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購(gòu)買(mǎi)一批足球,已知購(gòu)買(mǎi)2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購(gòu)買(mǎi)4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.
(1)求A,B兩種品牌的足球的單價(jià).
(2)求該校購(gòu)買(mǎi)20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A、C的坐標(biāo)分別為A(-4,5),C(-1,3).
(1)請(qǐng)?jiān)诰W(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系(不寫(xiě)作法);
(2)請(qǐng)作出△ABC關(guān)于y軸對(duì)稱(chēng)△A'B'C';
(3)分別寫(xiě)出A'、B'、C'的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com