下列計算正確的是

  A. 3a-2a=l       B. a2 +a5 =a7         C. (ab)3一ab3     D. a2· a4 =a6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,邊長分別為1和2的兩個等邊三角形,開始它們在左邊重合,大三角形固定不動,然后把小三角形自左向右平移直至移出大三角形外停止.設(shè)小三角形移動的距離為x,兩個三角形重疊面積為y,則y關(guān)于x的函數(shù)圖象是(     )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


面積為10m2的正方形地毯,它的邊長介于

A.2 m與3 m之間                                                                          B.3 m與4 m之間

C.4 m與5 m之間                                     D.5 m與6 m之間

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖①,南京中山陵的臺階拾級而上被分成坡度不等的兩部分.圖②是臺階的側(cè)面圖,若斜坡BC長為120 m,在C處看B處的仰角為25°;斜坡AB長70 m,在A處看B處的俯角為50°,試求出陵墓的垂直高度AE的長.

(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)

圖①

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


    問題提出

如圖①,已知直線l與線段AB平行,試只用直尺作出AB的中點.

初步探索

如圖②,在直線l的上方取一個點E,連接EA、EB,分別與l交于點MN,連接MB、NA,交于點D,再連接ED并延長交AB于點C,則C就是線段AB 的中點.

推理驗證

利用圖形相似的知識,我們可以推理驗證ACCB

(1)若線段ab、c、d長度均不為0,則由下列比例式中,一定可以得出bd的是()

A.

B.

C.

D.

(2)由MNAB,可以推出△EFN∽△ECB,△EMN∽△EAB,△MND∽△BAD,

FND∽△CAD

     所以,有,

         所以,ACCB

拓展研究

如圖③,△ABC中,DBC的中點,點PAB上.

(3)在圖③中只用直尺作直線lBC

(4)求證:lBC

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


分式方程=1的解是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在Rt△ABC中,∠ABC= 90°,以AB為直徑的⊙O與AC邊交與點D.過D作⊙O的切線交BC與點E.連接OE.   

    (1)證明:OE∥AC;

    (2)①當(dāng)∠BAC=     °時,四邊形ODEB是正方形;

  ②當(dāng)∠BAC=     °時,AD=3DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,四邊形ABCD中,∠C=50°,∠B=∠D=90°,E、F分別是BC、DC上的點,當(dāng)△AEF的周長最小時,∠EAF的度數(shù)為( 。

 

A.

50°

B.

60°

C.

70°

D.

80°

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖13,已知Rt△ACB中,∠C=90°,∠BAC=45°.

                        

(1)(4分)用尺規(guī)作圖,:在CA的延長線上截取AD=AB,并連接BD(不寫作法,保留作圖痕跡)

(2)(4分)求∠BDC的度數(shù).

(3)(4分)定義:在直角三角形中,一個銳角A的鄰邊與對邊的比叫做∠A的余切,記作cotA,即,根據(jù)定義,利用圖形求cot22.5°的值.

查看答案和解析>>

同步練習(xí)冊答案