【題目】如圖,O在等邊△ABC內(nèi),∠BOC150°,將△BOC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)后,得△ADC,連接OD

(1)COD______三角形.

(2)OB5OC3,求OA的長(zhǎng).

【答案】(1)等邊;(2)OA=.

【解析】

(1)由旋轉(zhuǎn)的性質(zhì)可得COCD,ADBO,∠ACB∠DCO60°,可證△COD是等邊三角形;

(2)由等邊三角形的性質(zhì)可得ODOC3,∠CDO60°,可得∠ADO90°,由勾股定理可求OA的長(zhǎng).

解:(1)∵△BOC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)后,得△ADC,

∴△BOC≌△ADC

∴COCD,ADBO5∠ACB∠DCO60°,

∴△COD是等邊三角形,

故答案為:等邊;

(2)∵△COD是等邊三角形,

∴ODOC3∠CDO60°,

∵△BOC≌△ADC

∴∠ADC =∠BOC150°,

∴∠ADO∠ADC∠ODC90°

∴AO2AD2+OD29+2534,

∴AO

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,EAB的中點(diǎn),AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當(dāng)AB=6時(shí),求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋(píng)果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格調(diào)查,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.

1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.

2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.

3)當(dāng)每箱蘋(píng)果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9)如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).

(1)△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;

(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一條雙向公路隧道,其橫斷面由拋物線和矩形ABCD的三邊DA、AB、BC圍成,隧道最大高度為4.9米,AB=10米,BC=2.4米,若有一輛高為4米、寬為2米的集裝箱的汽車要通過(guò)隧道,為了使箱頂不碰到隧道頂部,又不違反交通規(guī)則(汽車應(yīng)靠道路右側(cè)行駛,不能超過(guò)道路中線),汽車的右側(cè)必須離開(kāi)隧道右壁幾米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出以下結(jié)論:①a+b+c<0;②b2-4ac>0;③b>0;④4a-2b+c<0;⑤c-a>1,其中正確的結(jié)論有(。

A. ①②④ B. ①②③ C. ①②⑤ D. ①②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,∠ABC=90°,AB=BCAE∠BAC的角平分線.CD⊥AE,與AE的延長(zhǎng)線交于D點(diǎn),與AB的延長(zhǎng)線交于F點(diǎn)。求證CD=AE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠B=∠C90°,EBC的中點(diǎn),DE平分∠ADC

1)求證:AE平分∠DAB;

2)若AD8,BC6,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ADBCBEAC,垂足分別為點(diǎn)D、E,ADBE交于點(diǎn)F,BF=AC, ABE=22°,則∠CAD的度數(shù)是________°.

查看答案和解析>>

同步練習(xí)冊(cè)答案