【題目】正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°.將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=FM (2)當(dāng)AE=1時(shí),求EF的長.
【答案】(1)證明詳見解析;(2).
【解析】試題分析:(1)由旋轉(zhuǎn)的性質(zhì)可知,DE=DM,∠EDM=90°,因?yàn)?/span>∠EDF=45°,所以∠FDM=∠EDM=45°,通過證明△DEF≌△DMF得到EF=MF;
(2)設(shè)EF=MF=x,則BF=4-x,BE=2,在Rt△EBF中,由勾股定理得到關(guān)于x的等式,解得x的值即可.
試題解析:(1)證明:∵△DAE逆時(shí)針旋轉(zhuǎn)90°得到△DCM,
∴DE=DM,∠EDM=90°,
∴∠EDF+∠FDM=90°,
∵∠EDF=45°,
∴∠FDM=∠EDM=45°,
在△DEF和△DMF中,
DE=DM,∠EDF=∠MDF,DF=DF,
∴△DEF≌△DMF(SAS),
∴EF=MF;
(2)設(shè)EF=MF=x, ∵AE=CM=1,且BC=3,
∴BM=BC+CM=3+1=4,
∴BF=BM-MF=BM-EF=4-x,
∵EB=AB-AE=3-1=2,
在Rt△EBF中,由勾股定理得EB+BF=EF, 即2+(4-x)=x,
解得:x=, 則EF=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A. a3+a3=2a6 B. (x2)3=x5 C. 2a6÷a3=2a2 D. x3x2=x5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函數(shù)y=-x2+2x+c的圖象上,則y1,y2,y3的大小關(guān)系是( )
A. y3>y2>y1 B. y3>y1=y(tǒng)2 C. y1>y2>y3 D. y1=y(tǒng)2>y3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,二次函數(shù)y=x2+bx﹣2017的圖象與x軸交于點(diǎn)A(x1,0)、B(x2,0)兩點(diǎn),則當(dāng)x=x1+x2時(shí),則y的值為( )
A. 2019 B. 2017 C. 2018 D. ﹣2017
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列推理中,錯誤的是( )
A. 因?yàn)?/span>AB⊥EF,EF⊥CD,所以AB⊥CD
B. 因?yàn)?/span>∠α=∠β,∠β=∠γ,所以∠α=∠γ
C. 因?yàn)?/span>a∥b,b∥c,所以a∥c
D. 因?yàn)?/span>AB=CD,CD=EF,所以AB=EF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com