【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.

(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).

求證:中點(diǎn)四邊形EFGH是平行四邊形;

(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;

(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)

【答案】(1)證明見解析;(2)四邊形EFGH是菱形;(3)四邊形EFGH是正方形.

【解析】(1)證明:如圖1中,連接BD.

∵點(diǎn)E,H分別為邊AB,DA的中點(diǎn),∴EH∥BD,EH=BD,∵點(diǎn)F,G分別為邊BC,CD的中點(diǎn),∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點(diǎn)四邊形EFGH是平行四邊形.

(2)四邊形EFGH是菱形.

證明:如圖2中,連接AC,BD.

∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD即∠APC=∠BPD,在△APC和△BPD中,AP=PB,APC=BPD,PC=PD,∴△APC≌△BPD,∴AC=BD∵點(diǎn)E,F(xiàn),G分別為邊AB,BC,CD的中點(diǎn),∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.

(3)四邊形EFGH是正方形.

證明:如圖2中,設(shè)AC與BD交于點(diǎn)O.AC與PD交于點(diǎn)M,AC與EH交于點(diǎn)N.

∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線BE、CF相交于點(diǎn)P.

(1)若∠ABC=70°,∠ACB=50°,則∠BPC=°;
(2)求證:∠BPC=180°﹣ (∠ABC+∠ACB);
(3)若∠A=α,求∠BPC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組: ,并把解集表示在數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,B=90°,以AB上的一點(diǎn)O為圓心,以O(shè)A為半徑的圓交AC于點(diǎn)D,交AB于點(diǎn)E.

(1)求證:ACAD=ABAE;

(2)如果BD是O的切線,D是切點(diǎn),E是OB的中點(diǎn),當(dāng)BC=2時(shí),求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一粒米的質(zhì)量是0.000021千克,這個(gè)數(shù)字用科學(xué)記數(shù)法表示為( )
A.21×104千克
B.2.1×106千克
C.2.1×105千克
D.2.1×104千克

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形OABC中,O為直角坐標(biāo)系的原點(diǎn),A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),分別作勻速運(yùn)動(dòng),其中點(diǎn)P沿OA向終點(diǎn)A運(yùn)動(dòng),速度為每秒1個(gè)單位;點(diǎn)Q沿OC、CB向終點(diǎn)B運(yùn)動(dòng),當(dāng)這兩點(diǎn)中有一點(diǎn)到達(dá)自己的終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).設(shè)P從出發(fā)起運(yùn)動(dòng)了t秒.

(1)如果點(diǎn)Q的速度為每秒2個(gè)單位,①試分別寫出這時(shí)點(diǎn)Q在OC上或在CB上時(shí)的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);

②求t為何值時(shí),PQ∥OC?

(2)如果點(diǎn)P與點(diǎn)Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,①試用含t的代數(shù)式表示這時(shí)點(diǎn)Q所經(jīng)過的路程和它的速度;

②試問:這時(shí)直線PQ是否可能同時(shí)把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,D、E、F分別為AB、BC、AC邊上的中點(diǎn),AC=4cm,BC=6cm,那么四邊形CEDF為 , 它的邊長分別為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組正方形按如圖所示的方式放置,其中頂點(diǎn)B1在y軸上,頂點(diǎn)C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…則正方形A2016B2016C2016D2016的邊長是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案