【題目】在學(xué)校組織的科學(xué)素養(yǎng)競賽中,每班參加比賽的人數(shù)相同,成績分為,,四個(gè)等級,其中相應(yīng)等級的得分依次記為分,分,分,分,學(xué)校將八年級一班和二班的成績整理并繪制成如下的統(tǒng)計(jì)圖:

請你根據(jù)以上提供的信息解答下列問題:

(1)此次競賽中二班成績在分及其以上的人數(shù)有________人;

(2)補(bǔ)全下表中空缺的三個(gè)統(tǒng)計(jì)量:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

一班

________

二班

________

________

(3)請根據(jù)上述圖表對這次競賽成績進(jìn)行分析,寫出兩個(gè)結(jié)論.

【答案】(1)21;(2)80;77.6;70;(3)見解析;

【解析】

(1)根據(jù)條形統(tǒng)計(jì)圖得到參賽人數(shù),然后根據(jù)每個(gè)級別所占比例求出成績在70分以上的人數(shù)即可;(2)利用加權(quán)平均數(shù)公式、中位數(shù)及眾數(shù)的確定方法求得一班成績的平均數(shù)、中位數(shù),二班成績的眾數(shù),填表即可;(3)根據(jù)其成績,作出合理的分析即可.

(1)一班參賽人數(shù)為:6+12+2+5=25(人),

∵兩班參賽人數(shù)相同,

∴二班成績在70分以上(包括70分)的人數(shù)為25×84%=21人;

(2)二班成績的平均數(shù):90×44%+80×4%+70×36%+60×16%=77.6(分);

二班成績的中位數(shù):70(分);

一班成績的眾數(shù):80(分).

填表如下:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

一班

80

二班

77.6

70

(3)①平均數(shù)相同的情況下,二班的成績更好一些.

②請一班的同學(xué)加強(qiáng)基礎(chǔ)知識訓(xùn)練,爭取更好的成績.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明要給正方形桌子買一塊正方形桌布.鋪成圖1時(shí),四周垂下的桌布,其長方形部分的寬均為20cm;鋪成圖2時(shí),四周垂下的桌布都是等腰直角三角形,且桌面四個(gè)角的頂點(diǎn)恰好在桌布邊上,則要買桌布的邊長是_____cm.(提供數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車廠一周計(jì)劃生產(chǎn)輛自行車,平均每天生產(chǎn)輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負(fù));

星期

增減

根據(jù)記錄可知前三天共生產(chǎn)________輛;

產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)________輛;

該廠實(shí)行計(jì)件工資制,每輛車元,超額完成任務(wù)每輛獎元,少生產(chǎn)一輛扣元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司欲招收職員一名,從學(xué)歷、經(jīng)驗(yàn)和工作態(tài)度等三個(gè)方面對甲乙丙進(jìn)行了初步測試,測試成績?nèi)缦卤恚?/span>

(1)如果將學(xué)歷、經(jīng)驗(yàn)和工作態(tài)度三項(xiàng)得分按的比例確定各人的最終得分,并以此為據(jù)確定錄用者,那么誰將被錄用?

(2)自己確定學(xué)歷、經(jīng)驗(yàn)和工作態(tài)度三項(xiàng)的權(quán),并根據(jù)自己的方案確定錄用者.

應(yīng)聘者

項(xiàng)目

學(xué)歷

經(jīng)驗(yàn)

工作態(tài)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:
在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:
尺規(guī)作圖:過圓外一點(diǎn)作圖的切線。
已知:P為圓O外一點(diǎn)。
求作:經(jīng)過點(diǎn)P的圓O的切線。

小敏的作法如下:
①連接OP,作線段OP的垂直平分線MN交OP于點(diǎn)C;
②以點(diǎn)C為圓心,CO的長為半徑作圓交圓O于A、B兩點(diǎn);
③作直線PA、PB,所以直線PA、PB就是所求作的切線。

老師認(rèn)為小敏的作法正確.
請回答:連接OA,OB后,可證∠OAP=∠OBP=90°,其依據(jù)是;由此可證明直線PA,PB都是⊙O的切線,其依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中記載了這樣一道題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)代的語言表述為:“如果AB為⊙O的直徑,弦CD⊥AB于E,AE=1寸,CD=10寸,那么直徑AB的長為多少寸?”請你補(bǔ)全示意圖,并求出AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是拋物線形拱橋,當(dāng)拱頂離水面2米時(shí),水面寬4米.若水面下降1米,則水面寬度將增加多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ADC=∠ABC90°ADCD,DPABP.若四邊形ABCD的面積是18,則DP的長是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)ECD的中點(diǎn),點(diǎn)FBC邊上的一點(diǎn),且EFAE.求證:AE平分∠DAF.

小林同學(xué)讀題后有一個(gè)想法,延長FE,AD交于點(diǎn)M,要證AE平分∠DAF,只需證AMF是等腰三角形即可.請你參考小林的想法,完成此題的證明

查看答案和解析>>

同步練習(xí)冊答案