【題目】甲、乙兩條輪船同時從港口A出發(fā),甲輪船以每小時30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時15海里的速度沿著正東方向行進,1小時后,甲船接到命令要與乙船會和,于是甲船改變了行進的速度,沿著東南方向航行,結果在小島C處與乙船相遇.假設乙船的速度和航向保持不變,求港口A與小島C之間的距離.
【答案】()海里
【解析】
試題分析:作BD⊥AC于點D,根據(jù)題意得出AB=30,∠BAC=30°,∠BCA=45°,根據(jù)Rt△ABD的三角函數(shù)得出BD的長度,然后根據(jù)Rt△BCD的三角函數(shù)得出CD的長度,最后根據(jù)AD+CD=AC得出答案.
試題解析:作BD⊥AC于點D,如圖所示:由題意可知:AB=30×1=30,∠BAC=30°,∠BCA=45°,
在Rt△ABD中, ∵AB=30,∠BAC=30°, ∴BD=15,AD=ABcos30°=,
在Rt△BCD中, ∵BD=15,∠BCD=45°, ∴CD=15海里, ∴AC=AD+CD=,
即A、C間的距離為()海里.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在方格紙內將△ABC水平向右平移4個單位得到△A′B′C′.
(1)補全△A′B′C′,利用網(wǎng)格點和直尺畫圖;
(2)圖中AC與A1C1的關系是: ;
(3)畫出AB邊上的高線CD;
(4)畫出△ABC中AB邊上的中線CE;
(5)△BCE的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一張如圖1的長方形鐵皮,四個角都剪去邊長為30厘米的正方形,再四周折起,做成一個有底無蓋的鐵盒如圖2,鐵盒底面長方形的長是4a(cm),寬是3a(cm),這個無蓋鐵盒各個面的面積之和稱為鐵盒的全面積.
(1)請用a的代數(shù)式表示圖1中原長方形鐵皮的面積;
(2)若要在鐵盒的各個外表面漆上某種油漆,每元錢可漆的面積為(cm2),則油漆這個鐵盒需要多少錢(用a的代數(shù)式表示)?
(3)鐵盒的底面積是全面積的幾分之幾(用a的代數(shù)式表示)?若鐵盒的底面積是全面積的,求a的值;
(4)是否存在一個正整數(shù)a,使得鐵盒的全面積是底面積的正整數(shù)倍?若存在,請求出這個a,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知多項式3x-mx+n分解因是的結果為(3x+2)(x-1),則m,n的值分別為( )
A. m=1, n=-2 B. m=-1,n=-2
C. m=2,n=-2 D. m=-2, n=-2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校舉辦“迎奧運”知識競賽,設一、二、三等獎共12名,獎品發(fā)放方案如下表:
一等獎 | 二等獎 | 三等獎 |
1盒福娃和1枚徽章 | 一盒福娃 | 一枚徽章 |
用于購買獎品的總費用不少于1000元但不超過1100元,小明在購買“福娃”和徽章前,了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)若本次活動設一等獎2名,則二等獎和三等獎應各設多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小龍在學校組織的社會調查活動中負責了解他所居住的小區(qū)450戶居民的家庭收入情況.他從中隨機調查了40戶居民家庭收入情況(收入取整數(shù),單位:元),并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.
根據(jù)以上提供的信息,解答下列問題:
(1)補全頻數(shù)分布表.
(2)補全頻數(shù)分布直方圖.
(3)繪制相應的頻數(shù)分布折線圖.
(4)請你估計該居民小區(qū)家庭屬于中等收入(大于1000不足1600元)的大約有多少戶?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙是△ABC的外接圓,AC是直徑,過點O作OD⊥AB于點D,延長DO交⊙于點P,過點P作PE⊥AC于點E,作射線DE交BC的延長線于F點,連接PF。
(1)若∠POC=60°,AC=12,求劣弧PC的長;(結果保留π)
(2)求證:OD=OE;
(3)求證:PF是⊙的切線。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com