【題目】為創(chuàng)建“國家衛(wèi)生城市”,進一步優(yōu)化市中心城區(qū)的環(huán)境,德州市政府?dāng)M對部分路段的人行道地磚、花池、排水管道等公用設(shè)施全面更新改造,根據(jù)市政建設(shè)的需要,須在60天內(nèi)完成工程.現(xiàn)在甲、乙兩個工程隊有能力承包這個工程.經(jīng)調(diào)查知道:乙隊單獨完成此項工程的時間比甲隊單獨完成多用25天,甲、乙兩隊合作完成工程需要30天,甲隊每天的工程費用2500元,乙隊每天的工程費用2000元.
(1)甲、乙兩個工程隊單獨完成各需多少天?
(2)請你設(shè)計一種符合要求的施工方案,并求出所需的工程費用.
【答案】解:(1)設(shè)甲工程隊單獨完成該工程需x天,則乙工程隊單獨完成該工程需(x+25)天.(1分)
根據(jù)題意得:.(3分)
方程兩邊同乘以x(x+25),得30(x+25)+30x=x(x+25),
即x2﹣35x﹣750=0.
解之,得x1=50,x2=﹣15.(5分)
經(jīng)檢驗,x1=50,x2=﹣15都是原方程的解.
但x2=﹣15不符合題意,應(yīng)舍去.(6分)
∴當(dāng)x=50時,x+25=75.
答:甲工程隊單獨完成該工程需50天,則乙工程隊單獨完成該工程需75天.(7分)
(2)此問題只要設(shè)計出符合條件的一種方案即可.
方案一:由甲工程隊單獨完成.(8分)
所需費用為:2500×50=125000(元).(10分)
方案二:由甲乙兩隊合作完成.
所需費用為:(2500+2000)×30=135000(元).(10分)
【解析】
(1)設(shè)甲工程隊單獨完成該工程需x天,則乙工程隊單獨完成該工程需(x+25)天.根據(jù)題意得:.(2)此問題只要設(shè)計出符合條件的一種方案即可.方案一:由甲工程隊單獨完成.方案二:由甲乙兩隊合作完成.
解:(1)設(shè)甲工程隊單獨完成該工程需x天,則乙工程隊單獨完成該工程需(x+25)天.
根據(jù)題意得:.
方程兩邊同乘以x(x+25),得30(x+25)+30x=x(x+25),
即x2﹣35x﹣750=0.
解之,得x1=50,x2=﹣15.
經(jīng)檢驗,x1=50,x2=﹣15都是原方程的解.
但x2=﹣15不符合題意,應(yīng)舍去.
∴當(dāng)x=50時,x+25=75.
答:甲工程隊單獨完成該工程需50天,則乙工程隊單獨完成該工程需75天.
(2)此問題只要設(shè)計出符合條件的一種方案即可.
方案一:由甲工程隊單獨完成.
所需費用為:2500×50=125000(元).
方案二:由甲乙兩隊合作完成.
所需費用為:(2500+2000)×30=135000(元).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于某一函數(shù)給出如下定義:若存在實數(shù)p,當(dāng)其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當(dāng)函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.
(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;
(2)函數(shù)y=2x2-bx.
①若其不變長度為零,求b的值;
②若1≤b≤3,求其不變長度q的取值范圍;
(3) 記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個不重合的二次函數(shù)圖象關(guān)于軸對稱,則稱這兩個二次函數(shù)為“關(guān)于軸對稱的二次函數(shù)”.
(1)請寫出兩個“關(guān)于軸對稱的二次函數(shù)”;
(2)已知兩個二次函數(shù)和是“關(guān)于軸對稱的二次函數(shù)”,求函數(shù)的頂點坐標(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在樓房AB和塔CD之間有一棵樹EF,從樓頂A處經(jīng)過樹頂E點恰好看到塔的底部D點,且俯角α為45°,從樓底B點1米的P點處經(jīng)過樹頂E點恰好看到塔的頂部C點,且仰角β為30°.已知樹高EF=6米,求塔CD的高度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的周長為21,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為( )
A. 13 B. 14 C. 15 D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在反比例函數(shù)y=(x>0)上,以OA為邊作正方形OABC,邊AB交y軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點A(a,0),點B(2﹣a,0),且A在B的左邊,點C(1,﹣1),連接AC,BC,若在AB,BC,AC所圍成區(qū)域內(nèi)(含邊界),橫坐標和縱坐標都為整數(shù)的點的個數(shù)為4個,那么a的取值范圍為(。
A. ﹣1<a≤0B. 0≤a<1C. ﹣1<a<1D. ﹣2<a<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面內(nèi)的⊙C和⊙C外一點Q,給出如下定義:若過點Q的直線與⊙C存在公共點,記為點A,B,設(shè),則稱點A(或點B)是⊙C的“K相關(guān)依附點”,特別地,當(dāng)點A和點B重合時,規(guī)定AQ=BQ,(或).
已知在平面直角坐標系xoy中,Q(-1,0),C(1,0),⊙C的半徑為r.
(1)如圖1,當(dāng)時,
①若A1(0,1)是⊙C的“k相關(guān)依附點”,求k的值.
②A2(1+,0)是否為⊙C的“2相關(guān)依附點”.
(2)若⊙C上存在“k相關(guān)依附點”點M,
①當(dāng)r=1,直線QM與⊙C相切時,求k的值.
②當(dāng)時,求r的取值范圍.
(3)若存在r的值使得直線與⊙C有公共點,且公共點時⊙C的“相關(guān)依附點”,直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點O為BE上一點,以OB為半徑的⊙O交AB于點E,交AC于點D.BD平分∠ABC.
(1)求證:AC為⊙O切線;
(2)點F為的中點,連接BF,若BC=,BD=8,求⊙O半徑及DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com