如圖,已知以直角梯形ABCD的腰CD為直徑的半圓O與梯形上底AD、下底BC以及腰AB均相切,切點分別是D,C,E.若半圓O的半徑為2,梯形的腰AB為5,則該梯形的周長是          
14

試題分析:根據(jù)切線長定理可得AD=AE,BC=BE,再結合半徑為2,腰AB為5即可求得結果.
∵以直角梯形ABCD的腰CD為直徑的半圓O與梯形上底AD、下底BC以及腰AB均相切
∴AD=AE,BC=BE
∴該梯形的周長
點評:解題的關鍵是熟練掌握切線長定理:從圓外一點作圓的兩條切線,它們的長度相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

正方形的邊長為2,以各邊為直徑在正方形內(nèi)畫半圓,則圖中陰影部分的面積為    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,點P是正方形ABCD內(nèi)的一點,連結PA,PB,PC.

(1)如圖甲,將△PAB繞點B順時針旋轉(zhuǎn)90°到△的位置.
①設AB的長為a,PB的長為b(b<a),求△PAB旋轉(zhuǎn)到△的過程中邊PA所掃過區(qū)域 (圖甲中陰影部分)的面積;
②若PA=3,PB=6,∠APB=135°,求PC的長.
(2)如圖乙,若PA2+PC2=2PB2,請說明點P必在對角線AC上.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直徑為10的⊙A經(jīng)過點C(0,5)和點0(0,0),B是y軸右側⊙A優(yōu)弧上一點,則∠OBC的余弦值為        。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE、CB于點P、Q,連接AC.給出下列結論:①∠BAD=∠ABC;②AD=CB;③點P是△ACQ的外心;④GP=GD.⑤CB∥GD.
其中正確結論的個數(shù)是(    )

A.1          B.2           C.3         D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,OA是⊙O的半徑,以OA為直徑的⊙C與⊙O的弦AB相交于點D.

求證:點D是AB的中點.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將量角器按如圖所示的方式放置在三角形紙板上,使點C在半圓上.點A、B的讀數(shù)分別為86°、30°,則∠ACB的大小為 (      )

A.15      B.28         C.29          D.34

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知在△中,∠的平分線與△的外接圓交于,過.
求證:是⊙切線.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,平面直角坐標系中,⊙O1過原點O,且⊙O1與⊙O2相外切,圓心O1與O2在x軸正半軸上,⊙O1的半徑O1P1、⊙O2的半徑O2P2都與x軸垂直,且點P1、P2在反比例函數(shù)
(x>0)的圖象上,則__________.

查看答案和解析>>

同步練習冊答案