【題目】在矩形ABCD中,AB6BC8,點(diǎn)EBC延長(zhǎng)線(xiàn)上一點(diǎn),且BDBE,連接DE,QDE的中點(diǎn),有一動(dòng)點(diǎn)PB點(diǎn)出發(fā),沿BC以每秒1個(gè)單位的速度向E點(diǎn)運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

(1)如圖1,連接DP、PQ,則SDPQ_____(用含t的式子表示)

(2)如圖2,M、N分別為ABAD的中點(diǎn),當(dāng)t為何值時(shí),四邊形MNQP為平行四邊形?請(qǐng)說(shuō)明理由;

(3)如圖3,連接CQ,AQ,試判斷AQ、CQ的位置關(guān)系并加以證明.

【答案】(1)15t;(2)t5時(shí),四邊形MNQP為平行四邊形;(3)AQCQ.

【解析】

(1)由勾股定理可求BD10,由三角形的面積公式和SDPQ(SBEDSBDP)可求解;

(2)當(dāng)t5時(shí),可得BP5BE,由中位線(xiàn)定理可得MNBD,MNBD5PQBD,PQBD5,可得MNPQ,MNPQ,可得結(jié)論.

(3)連接BQ,由等腰三角形的性質(zhì)可得∠AQD+BQA90°,由直角三角形的性質(zhì)可得DQCQ,∠DCQ=∠CDQ,由“SAS”可證ADQ≌△BCQ,可得∠AQD=∠BQC,即可得結(jié)論.

解:(1)∵四邊形ABCD是矩形,AB6BC8,

BC8,CD6,

BD10

BDBE10

QDE的中點(diǎn),

SDPQSDPE,

SDPQ(SBEDSBDP),

故答案為15t

(2)當(dāng)t5時(shí),四邊形MNQP為平行四邊形,

理由如下:∵MN分別為AB、AD的中點(diǎn),

MNBD,MNBD5

t5時(shí),

BP5BE,且點(diǎn)QDE的中點(diǎn),

PQBDPQBD5

MNPQ,MNPQ

∴四邊形MNQP是平行四邊形

(3)AQCQ

理由如下:如圖,連接BQ,

BDBE,點(diǎn)QDE中點(diǎn),

BQDE,

∴∠AQD+BQA90°

∵在RtDCE中,點(diǎn)QDE中點(diǎn),

DQCQ

∴∠DCQ=∠CDQ,且∠ADC=∠BCD90°

∴∠ADQ=∠BCQ,且BCADDQCQ

∴△ADQ≌△BCQ(SAS)

∴∠AQD=∠BQC,且∴∠AQD+BQA90°

∴∠BQC+BQA90°

∴∠AQC90°

AQCQ

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】依據(jù)國(guó)家實(shí)行的《國(guó)家學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》,對(duì)懷柔區(qū)初一學(xué)生身高進(jìn)行抽樣調(diào)查,以便總結(jié)懷柔區(qū)初一學(xué)生現(xiàn)存的身高問(wèn)題,分析其影響因素,為學(xué)生的健康發(fā)展及學(xué)校體育教育改革提出合理項(xiàng)建議.已知懷柔區(qū)初一學(xué)生有男生840人,女生800人,他們的身高在 范圍內(nèi),隨機(jī)抽取初一學(xué)生進(jìn)行抽樣調(diào)查。抽取的樣本中,男生比女生多2人,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表;

根據(jù)統(tǒng)計(jì)圖表提供的信息,下列說(shuō)法中

①抽取男生的樣本中,身高 之間的學(xué)生有18人;

②初一學(xué)生中女生的身高的中位數(shù)在組;

③抽取的樣本中抽取女生的樣本容量是38

④初一學(xué)生身高在 之間的學(xué)生約有800人。其中合理的是(

A. ①②B. ①④C. ②④D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩水庫(kù)向甲、乙兩地調(diào)水,其中甲地需水萬(wàn)噸,乙地需水萬(wàn)噸,兩水庫(kù)各可調(diào)出水萬(wàn)噸,從水庫(kù)到甲地千米,到乙地千米;水庫(kù)到甲地千米,到乙地千米,設(shè)計(jì)一個(gè)調(diào)運(yùn)方案使水的調(diào)運(yùn)總量(單位:萬(wàn)噸千米)盡可能大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以邊長(zhǎng)為的正方形的中心為端點(diǎn),引兩條相互垂直的射線(xiàn),分別與正方形的邊交于兩點(diǎn),則線(xiàn)段的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M是ABC的邊BC的中點(diǎn),AN平分BAC,BNAN于點(diǎn)N,延長(zhǎng)BN交AC于點(diǎn)D,已知AB=10,BC=15,MN=3

(1)求證:BN=DN;

(2)求ABC的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人參加某體育項(xiàng)目訓(xùn)練,為了便于研究,把最后5次的訓(xùn)練成績(jī)分別用實(shí)線(xiàn)和虛線(xiàn)連接起來(lái),如圖,下面的結(jié)論錯(cuò)誤的是(  )

A. 乙的第2次成績(jī)與第5次成績(jī)相同

B. 3次測(cè)試,甲的成績(jī)與乙的成績(jī)相同

C. 4次測(cè)試,甲的成績(jī)比乙的成績(jī)多2

D. 5次測(cè)試中,甲的成績(jī)都比乙的成績(jī)高

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩座建筑物的水平距離BC40m,從D點(diǎn)測(cè)得A點(diǎn)的仰角為30°,B點(diǎn)的俯角為10°,求建筑物AB的高度(結(jié)果保留小數(shù)點(diǎn)后一位).

參考數(shù)據(jù)sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,1.732.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,轉(zhuǎn)盤(pán)中8個(gè)扇形的面積都相等,任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)1,當(dāng)轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí),估計(jì)下列事件發(fā)生的可能性的大小,并將這些事件的序號(hào)按發(fā)生的可能性從小到大的順序排成一列是__________.(填序號(hào))

1)指針落在標(biāo)有3的區(qū)域內(nèi);(2)指針落在標(biāo)有9的區(qū)域內(nèi);

3)指針落在標(biāo)有數(shù)字的區(qū)域內(nèi);(4)指針落在標(biāo)有奇數(shù)的區(qū)域內(nèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明騎自行車(chē)從甲地到乙地,圖中的折線(xiàn)表示小明行駛的路程與所用時(shí)間之間的函數(shù)關(guān)系.試根據(jù)函數(shù)圖像解答下列問(wèn)題:

1)小明在途中停留了____,小明在停留之前的速度為____;

2)求線(xiàn)段的函數(shù)表達(dá)式;

3)小明出發(fā)1小時(shí)后,小華也從甲地沿相同路徑勻速向乙地騎行,時(shí),兩人同時(shí)到達(dá)乙地,求為何值時(shí),兩人在途中相遇.

查看答案和解析>>

同步練習(xí)冊(cè)答案