精英家教網 > 初中數學 > 題目詳情

【題目】兩個全等的直角三角形ABC和DEF重疊在一起,其中∠A=60°,AC=1,固定△ABC不動,將△DEF進行如下操作:

(1)操作發(fā)現(xiàn)
如圖①,△DEF沿線段AB向右平移(即D點在線段AB內移動),連接DC、CF、FB,四邊形CDBF的形狀在不斷變化,但它的面積不變化,請求出其面積.
(2)猜想論證
如圖②,當D點移到AB的中點時,請你猜想四邊形CDBF的形狀,并說明理由.
(3)拓展研究
如圖③,△DEF的D點固定在AB的中點,然后繞D點按順時針方向旋轉△DEF,使DF落在AB的邊上,此時F點恰好與B點重合,連接AE,則sinα=

【答案】
(1)解:如圖1,∵△DEF沿線段AB向右平移(即D點在線段AB內移動),

∴CF=AD,AC=DF,

∴四邊形ACFD為平行四邊形,

∴AD∥CF,

∴SDCF=SBCF=SACD,

∴S四邊形CDBF=SCDB+SBCF=SCDB+SACD=SACB,

在Rt△ACB中,∵∠A=60°,

∴BC= AC=

∴SABC= ×1× = ,

∴S四邊形CDBF=


(2)解:四邊形CDBF為菱形.理由如下:

如圖2,∵點D為斜邊AB的中點,

∴DC=DA=DB,

∵CF∥AD,CF=AD,

∴CF=BD,CF∥DB,

∴四邊形CDBF為平行四邊形,

而DC=DB,

∴四邊形CDBF為菱形;


(3)
【解析】解:(3)作DH⊥AE于H,如圖,

在Rt△ACB中,∵∠A=60°,

∴AB=2AC=2,

∵點D為AB的中點,

∴AD=BD= AB=1,

∵繞D點按順時針方向旋轉△DEF,使DF落在AB邊上,此時F點恰好與B點重合,

∴∠EFD=90°,EB= ,DE=AB=2,

在Rt△ABE中,AE= = =

DHAB= ADEB,

∴DH= =

在Rt△EDH中,sinα= =

所以答案是

【考點精析】掌握平移的性質和銳角三角函數的定義是解答本題的根本,需要知道①經過平移之后的圖形與原來的圖形的對應線段平行(或在同一直線上)且相等,對應角相等,圖的形狀與大小都沒有發(fā)生變化;②經過平移后,對應點所連的線段平行(或在同一直線上)且相等;銳角A的正弦、余弦、正切、余切都叫做∠A的銳角三角函數.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知,如圖,△ABC,∠ACB=90°,∠B=2A

1)用直尺和圓規(guī)作△ABC的角平分線BD,保留作圖痕跡;

2)在(1)的基礎上,求∠ADB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在東西向的馬路上有一個巡崗亭A,巡崗員甲從崗亭A出發(fā)以13km/h速度勻速來回巡邏,如果規(guī)定向東巡邏為正,向西巡邏為負,巡邏情況記錄如下:(單位:千米)

第一次

第二次

第三次

第四次

第五次

第六次

第七次

4

-5

3

-4

-3

6

-1

1)求第六次結束時甲的位置(在崗亭A的東邊還是西邊?距離多遠?)

2)在第幾次結束時距崗亭A最遠?距離A多遠?

3)巡邏過程中配置無線對講機,并一直與留守在崗亭A的乙進行通話,問在甲巡邏過程中,甲與乙的保持通話時長共多少小時?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時出發(fā)勻速相向而行,大樓C位于AB之間,甲與乙相遇在AC中點處,然后兩車立即掉頭,以原速原路返回,直到各自回到出發(fā)點.設甲、乙兩車距大樓C的距離之和為y(千米),甲車離開A地的時間為t(小時),y與t的函數圖象所示,則第21小時時,甲乙兩車之間的距離為千米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平行四邊形ABCD中,分別以AD、BC為邊向內作等邊ADE和等邊BCF,連接BEDF.求證:四邊形BEDF是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】計算:
(1)(a+b)(a﹣2b)﹣(a﹣b)2;
(2) ).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學校準備從甲乙兩位選手中選擇一位選手代表學校參加所在地區(qū)的漢字聽寫大賽,學校對兩位選手從表達能力、閱讀理解、綜合素質和漢字聽寫四個方面做了測試,他們各自的成績(百分制)如表:

選手

表達能力

閱讀理解

綜合素質

漢字聽寫


85

78

85

73


73

80

82

83

1)由表中成績已算得甲的平均成績?yōu)?/span>80.25,請計算乙的平均成績,從他們的這一成績看,應選派誰;

2)如果表達能力、閱讀理解、綜合素質和漢字聽寫分別賦予它們2、134的權,請分別計算兩名選手的平均成績,從他們的這一成績看,應選派誰.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】周末小麗從家里出發(fā)騎單車去公園,因為她家與公園之間是一條筆直的自行車道,所以小麗騎得特別放松.途中,她在路邊的便利店挑選一瓶礦泉水,耽誤了一段時間后繼續(xù)騎行,愉快地到了公園,圖中描述了小麗路上的情景,下列說法中正確的是_______

①小麗在便利店停留時間為15分鐘

②公園離小麗家的距離為2000

③小麗從家到達公園共用時間20分鐘

④小麗從家到便利店的平均速度為100/分鐘

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某次學生夏令營活動,有小學生、初中生、高中生和大學生參加,共200人,各類學生人數比例見扇形統(tǒng)計圖.

(1)參加這次夏令營活動的初中生共有多少人?

(2)活動組織者號召參加這次夏令營活動的所有學生為貧困學生捐款.結果小學生每人

捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大學生每人捐款 20 元.問平均 每人捐款是多少元?

(3)在(2)的條件下,把每個學生的捐款數額(以元為單位)——記錄下來,則在這組數據中,眾數是多少?

查看答案和解析>>

同步練習冊答案