【題目】△ABC中,∠C=90°,∠BAC的平分線交BC于D,且CD=15,AC=30,則AB的長(zhǎng)為(

A. 30 B. 40 C. 50 D. 60

【答案】C

【解析】

DEAB,易得ABC∽△DBE,則,設(shè)BD=x,BE=y,則,解得x=2y-15,在RtDBE中,BD2=DE2+BE2,即(2y-15)2=y2+152,求得y的值,即可求得AB.

如圖,作DEAB,

∴∠BED=90°,

∴∠BED=C=90°,

∵∠EBD=ABC,

∴△ABC∽△DBE,

,

設(shè)BD=x,BE=y,則

30y=152+15x,

x=2y-15,

RtDBE中,BD2=DE2+BE2,

即(2y-15)2=y2+152,

y(y-20)=0,

y=20,

AB=AE+BE=30+20=50.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l與⊙O 相離,OA⊥l于點(diǎn)A,交⊙O 于點(diǎn)P,點(diǎn)B是⊙O上一點(diǎn),連接BP并延長(zhǎng),交直線l于點(diǎn)C,使得AB=AC.

(1)求證:AB是⊙O的切線;

(2)若PC=2,OA=3,求線段PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,內(nèi)并排不重疊放入邊長(zhǎng)為1的小正方形紙片,第一層小紙片的一條邊都在AB上,首尾兩個(gè)正方形各有一個(gè)頂點(diǎn)分別在ACBC上,依次這樣擺放上去,則最多能擺放  個(gè)小正方形紙片.

A. 14個(gè) B. 15個(gè) C. 16個(gè) D. 17個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù) y=x+1 的圖象與 y 軸交于點(diǎn) A,一次函數(shù) y=kx+b 的圖象經(jīng)過點(diǎn) B0,﹣1),與x 以及 y=x+1 的圖象分別交于點(diǎn) C、D且點(diǎn) D 的坐標(biāo)為1,n),

1n= ,k= ,b= ;

2函數(shù) y=kx+b 的函數(shù)值大于函數(shù) y=x+1 的函數(shù)值,則X的取值范圍是 ;

3求四邊形 AOCD 的面積;

4 x軸上是否存在點(diǎn) P,使得以點(diǎn) P,C,D 為頂點(diǎn)的三角形是直角三角形?若存在求出點(diǎn) P 的坐標(biāo); 若不存在請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣2=0.

(1)若該方程有兩個(gè)實(shí)數(shù)根,求m的最小整數(shù)值;

(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且(x1﹣x22+m2=21,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,過點(diǎn)AAEBC于點(diǎn)E,延長(zhǎng)BCF,使CF=BE,連接DF

1)求證:四邊形AEFD是矩形;

2)若AC=4,∠ABC=60°,求矩形AEFD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于一次函數(shù)y=kx+bk≠0),我們稱函數(shù)y[m]=為它的m分函數(shù)(其中m為常數(shù)).例如,y=3x+24分函數(shù)為:當(dāng)x≤4時(shí),y[4]=3x+2;當(dāng)x4時(shí),y[4]=-3x-2

1)如果y=x+1-1分函數(shù)為y[-1],

①當(dāng)x=4時(shí),y[-1]______;當(dāng)y[-1]=-3時(shí),x=______

②求雙曲線y=y[-1]的圖象的交點(diǎn)坐標(biāo);

2)如果y=-x+20分函數(shù)為y[0],正比例函數(shù)y=kxk≠0)與y=-x+20分函數(shù)y[0]的圖象無交點(diǎn)時(shí),直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B在一直線上,小明從點(diǎn)A出發(fā)沿AB方向勻速前進(jìn),4秒后走到點(diǎn)D,此時(shí)他(CD)在某一燈光下的影長(zhǎng)為AD,繼續(xù)沿AB方向以同樣的速度勻速前進(jìn)4秒后到點(diǎn)F,此時(shí)他(EF)的影長(zhǎng)為2米,然后他再沿AB方向以同樣的速度勻速前進(jìn)2秒后達(dá)點(diǎn)H,此時(shí)他(GH)處于燈光正下方.

(1)請(qǐng)?jiān)趫D中畫出光源O點(diǎn)的位置,并畫出他位于點(diǎn)F時(shí)在這個(gè)燈光下的影長(zhǎng)FM(不寫畫法);

(2)求小明沿AB方向勻速前進(jìn)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線BD上的點(diǎn)M處,折痕BEAD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線BD上的點(diǎn)N處,折痕DFBC于點(diǎn)F

1)求證:四邊形BFDE為平行四邊形;

2)若四邊形BFDE為菱形,且AB2,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案