如圖,拋物線的圖象過點C(0,1),頂點為Q(2,3)點D在x軸正半軸上,且線段OD=OC
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點的移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值,若不存在,請說明理由。
(1);(2)y=x2+2x+1; (3)證明見解析;(4)

試題分析:(1)利用待定系數(shù)法求出直線解析式;
(2)利用待定系數(shù)法求出拋物線的解析式;
(3)關(guān)鍵是證明△CEQ與△CDO均為等腰直角三角形;
(4)如圖所示,作點C關(guān)于直線QE的對稱點C′,作點C關(guān)于x軸的對稱點C″,連接C′C″,交OD于點F,交QE于點P,則△PCF即為符合題意的周長最小的三角形,由軸對稱的性質(zhì)可知,△PCF的周長等于線段C′C″的長度.利用軸對稱的性質(zhì)、兩點之間線段最短可以證明此時△PCF的周長最。鐖D③所示,利用勾股定理求出線段C′C″的長度,即△PCF周長的最小值.
(1)C(0,1),D(1,0)
∴直線CD的解析式為;
(2)設拋物線解析式為y=a(x-2)2+3,
易得y=(x-2)2+3=x2+2x+1
(3)OC=OD,OC⊥OD,∴△OCD為等腰直角三角形,
對稱軸x=2與CE交于點M,M(2,1)
易知△QMC與△QME是等腰直角三角形
∴△ CQE也是等腰直角三角形
∴△CEQ∽△CDO
(4)存在。
如圖作點C關(guān)于直線QE的對稱點C′,作點C關(guān)于x軸的對稱點C″,連接C′C″,交OD于點F,交QE于點P,則△PCF即為符合題意的周長最小的三角形,由軸對稱性得:
PC=PC′    CF=C″F
C,C′關(guān)于直線QE對稱
C′(4,5)
又C″(-1,0)   C′C″=
∴△PCF的周長最小值是
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

若兩個二次函數(shù)圖象的頂點,開口方向都相同,則稱這兩個二次函數(shù)為“同簇二次函數(shù)”。
(1)請寫出兩個為“同簇二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=2x2—4mx+2m2+1,和y2=ax2+bx+5,其中y1的圖象經(jīng)過點A(1,1),若y1+y2為y1為“同簇二次函數(shù)”,求函數(shù)y2的表達式,并求當0≤x≤3時,y2的最大值。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

小明同學將直角三角板直角頂點置于平面直角坐標系的原點O,兩直角邊與拋物線分別相交于A、B兩點.小明發(fā)現(xiàn)交點A、B兩點的連線總經(jīng)過一個固定點,則該點坐標為            

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

平面直角坐標系中,拋物線軸于A、B兩點(點A在點B左側(cè)),與軸交于點C,點A、C的坐標分別為(-3,0),(0,3),對稱軸直線軸于點E,點D為頂點.
(1)求拋物線的解析式;
(2)點P是直線AC下方的拋物線上一點,且,,求點P的坐標;
(3)點M是第一象限內(nèi)拋物線上一點,且∠MAC=∠ADE,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,O是坐標原點,點A的坐標是(-2,4),過點A作AB⊥y軸,垂足為B,連接OA.

(1)求△OAB的面積;
(2)若拋物線y=-x2-2x+c經(jīng)過點A.
①求c的值;
②將拋物線向下平移m個單位,使平移后得到的拋物線頂點落在△OAB的內(nèi)部(不包括△OAB的邊界),求m的取值范圍(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

正方形ABCD的邊長為1cm,M、N分別是BC.CD上兩個動點,且始終保持AM⊥MN,當BM=       cm時,四邊形ABCN的面積最大,最大面積為       cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

函數(shù)在同一直角坐標系中的圖象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

把二次函數(shù)y=ax2+bx+c的圖像向左平移4個單位或向右平移1個單位后都會經(jīng)過原點,則二次函數(shù)圖像的對稱軸與x軸的交點是
A.(-2.5,0)B.(2.5,0)C.(-1.5,0)D.(1.5,0)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,二次函數(shù)的圖象,記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;……如此進行下去,直至得C14. 若P(27,m)在第14段圖象C14上,則m=       

查看答案和解析>>

同步練習冊答案