【題目】已知:如圖,在平面直角坐標(biāo)系中,正比例函數(shù)yx的圖象與反比例函數(shù)yk0)的圖象交于點A(﹣2,﹣2),其中將直線OA向上平移3個單位后與y軸交于點C,與反比例函數(shù)在第三象限內(nèi)交點為B(﹣4,m).

1)求該反比例函數(shù)的解析式與平移后的直線解析式;

2)求△ABC的面積.

【答案】1y,yx+3;(26.

【解析】

(1)將點A坐標(biāo)(﹣2,﹣2)代入y求得k的值,根據(jù)平移的性即可得到結(jié)論;

(2)由題意得平移后直線解析式,即可知點C坐標(biāo),可將△ABC的面積轉(zhuǎn)化為△OBC的面積

1)將點A坐標(biāo)(﹣2,﹣2)代入yk=4,∴反比例函數(shù)的解析式為y

∵將直線yx向上平移3個單位,∴平移后的直線解析式為yx+3;

(2)連接OB

BCOA,∴△ABC的面積=△OBC的面積3×4=6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=﹣x+1的圖象與反比例函數(shù)的圖象交點的縱坐標(biāo)為2,當(dāng)﹣3<x<﹣1,反比例函數(shù)y的取值范圍是( 。

A. B. C. D. ﹣3<y<﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A、B兩地相距4km,上午800時,亮亮從A地步行到B地,820時芳芳從B地出發(fā)騎自行車到A地,亮亮和芳芳兩人離A地的距離Skm)與亮亮所用時間tmin)之間的函數(shù)關(guān)系如圖所示,芳芳到達(dá)A地時間為(

A. 830 B. 835 C. 840 D. 845

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們不妨約定:對角線互相垂直的凸四邊形叫做十字形”.

(1)在平行四邊形、矩形、菱形、正方形中,一定是十字形的有   

(2)如圖1,在四邊形ABCD中,ABAD,且CBCD

①證明:四邊形ABCD十字形”;

②若AB=2.BAD=60°,BCD=90°,求四邊形ABCD的面積.

(3)如圖2.A、B、C、D是半徑為1的⊙O上按逆時針方向排列的四個動點,ACBD交于點E,若∠ADBCDBABDCBD.滿足AC+BD=3,求線段OE的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:abc>0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時,y的值隨x值的增大而增大.其中正確的結(jié)論有( 。﹤.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓O通過五邊形OABCD的四個頂點.若弧ABD=150°,∠A=65°,∠D=60°,則弧BC的度數(shù)為何?( 。

A. 25 B. 40 C. 50 D. 55

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】劉帥參加“我學(xué)十九大”知識競賽,再答對最后兩道單選題就能問鼎冠軍.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題劉帥都不會,不過劉帥還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).

(1)如果劉帥第一題不使用“求助”,那么劉帥答對第一道題的概率是   

(2)從概率的角度分析,你建議劉帥在第幾題使用“求助”,說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩市相距150千米,分別從A、B處測得國家級風(fēng)景區(qū)中心C處的方位角如圖所示,風(fēng)景區(qū)區(qū)域是以C為圓心,45千米為半徑的圓,tanα=1.627,tanβ=1.373.為了開發(fā)旅游,有關(guān)部門設(shè)計修建連接AB兩市的高速公路.問連接AB高速公路是否穿過風(fēng)景區(qū),請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=kx+1與二次函數(shù)y2=ax2+bx﹣2交于A,B兩點,且A(1,0)拋物線的對稱軸是x=﹣

(1)ka、b的值;

(2)求不等式kx+1>ax2+bx﹣2的解集.

查看答案和解析>>

同步練習(xí)冊答案