(1)∵拋物線過(guò)C(0,-8),
∴c=-8,即y=ax
2+bx-8,
由函數(shù)經(jīng)過(guò)點(diǎn)(14,0)及對(duì)稱(chēng)軸為x=4可得
,
解得:
,
∴該拋物線的解析式為y=
x
2-
x-8.
(2)
存在直線CD垂直平分PQ.
由函數(shù)解析式為y=
x
2-
x-8,可求出點(diǎn)A坐標(biāo)為(-6,0),
在Rt△AOC中,AC=
=
=10=AD,
故可得OD=AD-OA=4,點(diǎn)D在函數(shù)的對(duì)稱(chēng)軸上,
∵線CD垂直平分PQ,
∴∠PDC=∠QDC,PD=DQ,
由AD=AC可得,∠PDC=∠ACD,
∴∠QDC=∠ACD,
∴DQ
∥AC,
又∵DB=AB-AD=20-10=10=AD,
∴點(diǎn)D是AB中點(diǎn),
∴DQ為△ABC的中位線,
∴DQ=
AC=5,
∴AP=AD-PD=AD-DQ=10-5=5,
∴t=5÷1=5(秒),
∴存在t=5(秒)時(shí),線段PQ被直線CD垂直平分.
在Rt△BOC中,BC=
=
=2
,
而DQ為△ABC的中位線,Q是BC中點(diǎn),
∴CQ=
,
∴點(diǎn)Q的運(yùn)動(dòng)速度為每秒
單位長(zhǎng)度;
(3)存在,過(guò)點(diǎn)Q作QH⊥x軸于H,則QH=
OC=4,PH=OP+OH=1+7=8,
在Rt△PQH中,PQ=
=
=4
,
①當(dāng)MP=MQ,即M為頂點(diǎn),則此時(shí)CD與PQ的交點(diǎn)即是M點(diǎn)(上面已經(jīng)證明CD垂直平分PQ),
設(shè)直線CD的直線方程為:y=kx+b(k≠0),
因?yàn)辄c(diǎn)C(0,-8),點(diǎn)D(4,0),
所以可得直線CD的解析式為:y=2x-8,
當(dāng)x=1時(shí),y=-6,
∴M
1(1,-6);
②當(dāng)PQ為等腰△MPQ的腰時(shí),且P為頂點(diǎn).
設(shè)直線x=1上存在點(diǎn)M(1,y),因?yàn)辄c(diǎn)P坐標(biāo)為(-1,0),
從而可得PM
2=2
2+y
2,
又PQ
2=80,
則2
2+y
2=80,
即y=±
,
∴M
2(1,2
),M
3(1,-2
);
③當(dāng)PQ為等腰△MPQ的腰時(shí),且Q為頂點(diǎn),點(diǎn)Q坐標(biāo)為(7,-4),
設(shè)直線x=1存在點(diǎn)M(1,y),
則QM
2=6
2+(y+4)
2=80,
解得:y=2
-4或-2
-4;
∴M
4(1,-4+2
),M
5(1,-4-2
);
綜上所述:存在這樣的五點(diǎn):
M
1(1,-6),M
2(1,2
),M
3(1,-2
)M
4(1,-4+2
),M
5(1,-4-2
).