【題目】如圖,正方形ABCD的邊長為4,點E、F分別在AB、BC上,且AE=BF=1,CE、DF交于點O,下列結(jié)論:①∠DOC=90°,②OC=OE,③CE=DF,④tan∠OCD=,⑤S△DOC=S四邊形EOFB中,正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
【答案】D
【解析】分析:由正方形ABCD的邊長為4,AE=BF=1,利用SAS易證得△EBC≌△FCD,然后全等三角形的對應(yīng)角相等,易證得①∠DOC=90°正確,③CE=DF正確;②由線段垂直平分線的性質(zhì)與正方形的性質(zhì),可得②錯誤;易證得∠OCD=∠DFC,即可求得④正確;由①易證得⑤正確.
詳解:∵正方形ABCD的邊長為4,∴BC=CD=4,∠B=∠DCF=90°.
∵AE=BF=1,∴BE=CF=4﹣1=3.
在△EBC和△FCD中,,
∴△EBC≌△FCD(SAS),∴∠CFD=∠BEC,CE=DF,故③正確,
∴∠BCE+∠BEC=∠BCE+∠CFD=90°,∴∠DOC=90°;故①正確;
連接DE,如圖所示,若OC=OE.
∵DF⊥EC,∴CD=DE.
∵CD=AD<DE(矛盾),故②錯誤;
∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,∴∠OCD=∠DFC,∴tan∠OCD=tan∠DFC==,故④正確;
∵△EBC≌△FCD,∴S△EBC=S△FCD,∴S△EBC﹣S△FOC=S△FCD﹣S△FOC,即S△ODC=S四邊形BEOF.故⑤正確;
故正確的有:①③④⑤.
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知一次函數(shù)的圖像直線AB經(jīng)過點(0,6)和點(-2,0).
(1)求這個函數(shù)的解析式;
(2)直線AB與x軸交于點A,與y軸交于點B,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在所給的平面直角坐標(biāo)系中描出下列各點:①點A在x軸上方,y軸左側(cè),距離x軸4個單位長度,距離y軸2個單位長度;②點B在x軸下方,y軸右側(cè),距離x、y軸都是3個單位長度;③點C在y軸上,位于原點下方,距離原點2個單位長度;④點D在x軸上,位于原點右側(cè),距離原點4個單位長度. 填空:點A的坐標(biāo)為________;點B的坐標(biāo)為________;點B位于第________象限內(nèi);點C的坐標(biāo)為________;點D的坐標(biāo)為________;線段CD的長度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為 2 的正方形 OABC 頂點 O 與坐標(biāo)原點 O 重合,邊 OA、OC 分別與 x、y 正半軸重合, 在 x 軸上取點 P(﹣2,0),將正方形 OABC 繞點 O 逆時針旋轉(zhuǎn) a°(0°<a<180°),得到正方形 OA′B′C′,在旋轉(zhuǎn)過程中,使得以 P,A′,B′為頂點的三角形是等腰三角形時,點 A′的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣4x﹣m(m>0)與x軸交于A、B兩點,與y軸交于點C,D為拋物線的頂點,C點關(guān)于拋物線對稱軸的對稱點為C′點.
(1)若m=5時,求△ABD的面積.
(2)若在(1)的條件下,點E在線段BC下方的拋物線上運動,求△BCE面積的最大值.
(3)寫出C點( , )、C′點( , )坐標(biāo)(用含m的代數(shù)式表示)
如果點Q在拋物線的對稱軸上,點P在拋物線上,以點C、C′、P、Q為頂點的四邊形是平行四邊形,直接寫出Q點和P點的坐標(biāo)(可用含m的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下邊的日歷中,用一個正方形任意圈出二行二列四個數(shù),
如
若在第一行第一列的那個數(shù)表示為,其余各數(shù)分別為,,.
(1)分別用含的代數(shù)式表示,,這三個數(shù);= .= ,= .
(2)求這四個數(shù)的和(用含的代數(shù)式表示,要求合并同類項化簡);
(3)這四個數(shù)的和會等于48嗎?如果會,請算出此時的值,如果不會,說明理由.(要求列方程解答)
(4)這四個數(shù)的和會等于112嗎?如果會,請算出此時的值,如果不會,說明理由.(要求列方程解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b過點A(5,0)和點C,反比例函數(shù)y=(x<0)過點D,作BD∥x軸交y軸于點B(0,﹣3),且BD=OC,tan∠OAC=.
(1)求反比例函數(shù)y=(x<0)和直線y=kx+b的解析式;
(2)連接CD,判斷線段AC與線段CD的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標(biāo)為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標(biāo);
(3)在(1)的條件下,設(shè)點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒個單位的速度運動到點D后停止,問當(dāng)點E的坐標(biāo)是多少時,點Q在整個運動過程中所用時間最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為提高學(xué)生課外閱讀能力,決定向九年級學(xué)生推薦課外閱讀書:A《熱愛生命》; B:《平凡的世界》;C:《毛澤東傳):;D:《牛虻》.并要求學(xué)生必須且只能選擇一本閱讀.為了解選擇四種課外閱讀書的學(xué)生人數(shù),隨機抽取了部分學(xué)生進行調(diào)查,并繪制以下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖回答下列問題(要求寫出簡要的解答過程).
(1)這次活動一共調(diào)查了多少名學(xué)生?
(2)補全條形統(tǒng)計圖;
(3)若該學(xué)校九年級總?cè)藬?shù)是1300人,請估計選擇《毛澤東傳》閱讀的學(xué)生人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com