【題目】在正方形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,點(diǎn)P在線段BC上(不含點(diǎn)B),∠BPE=∠ACB,PE交BO于點(diǎn)E,過點(diǎn)B作BF⊥PE,垂足為F,交AC于點(diǎn)G.
(1)當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)(如圖①):
①求證:△BOG≌△POE;②猜想:= ;
(2)當(dāng)點(diǎn)P與點(diǎn)C不重合時(shí),如圖②,的值會(huì)改變嗎?試說明理由.
【答案】(1)①證明見解析;②;(2),不會(huì)改變,理由見解析.
【解析】
(1)①由四邊形ABCD是正方形,P與C重合,易證得OB=OP,∠BOC=∠BOG=90°,由同角的余角相等,證得∠GBO=∠EPO,則可利用ASA證得:△BOG≌△POE;
②先判斷出∠BPF=∠GPF,進(jìn)而得出BF=BG,由①得△BOG≌△POE,得出BG=PE,即可得出結(jié)論;
(2)首先過P作PM∥AC交BG于M,交BO于N,易證得△BMN≌△PEN(ASA),△BPF≌△MPF(ASA),即可得BM=PE,BF=BM.則可求得
的值;
(1)①證明:∵四邊形ABCD是正方形,P與C重合,
∴OB=OP,∠BOC=∠BOG=90°,
∵PF⊥BG,∠PFB=90°,
∴∠GBO=90°﹣∠BGO,∠EPO=90°﹣∠BGO,
∴∠GBO=∠EPO,
在△BOG和△POE中,
∵,
∴△BOG≌△POE(ASA);
②由①知,△BOG≌△POE,
∴BG=PE,
∵∠BPE=∠ACB,∠BPF+∠GPF=∠ACB,
∴∠BPF=∠GPF,
∵BF⊥PE,
∴BF=BG,
∴,
故答案為;
(2)解:猜想.
證明:如圖2,過P作PM∥AC交BG于M,交BO于N,
∴∠PNE=∠BOC=90°,∠BPN=∠OCB.
∵∠OBC=∠OCB=45°,
∴∠NBP=∠NPB.
∴NB=NP.
∵∠MBN=90°﹣∠BMN,∠NPE=90°﹣∠BMN,
∴∠MBN=∠NPE,
在△BMN和△PEN中,
,
∴△BMN≌△PEN(ASA),
∴BM=PE.
∵∠BPE=∠ACB,∠BPN=∠ACB,
∴∠BPF=∠MPF.
∵PF⊥BM,
∴∠BFP=∠MFP=90°.
在△BPF和△MPF中,
,
∴△BPF≌△MPF(ASA).
∴BF=MF.
即BF=BM.
∴BF=PE.
即=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
①;②;③;…
根據(jù)上述式子的規(guī)律,解答下列問題:
(1)第④個(gè)等式為 ;
(2)寫出第個(gè)等式,并驗(yàn)證其正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=60°,點(diǎn)E、F分別為AD、DC上的動(dòng)點(diǎn),∠EBF=60°,點(diǎn)E從點(diǎn)A向點(diǎn)D運(yùn)動(dòng)的過程中,AE+CF的長(zhǎng)度( )
A. 逐漸增加 B. 逐漸減小
C. 保持不變且與EF的長(zhǎng)度相等 D. 保持不變且與AB的長(zhǎng)度相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在暑期社會(huì)實(shí)踐活動(dòng)中,以每千克0.8元的價(jià)格從批發(fā)市場(chǎng)購(gòu)進(jìn)若干千克西瓜到市場(chǎng)上去銷售,在銷售了40千克西瓜之后,余下的每千克降價(jià)0.4元,全部售完.銷售金額與售出西瓜的千克數(shù)之間的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象提供的信息完成以下問題:
(1)求降價(jià)前銷售金額y(元)與售出西瓜x(千克)之間的函數(shù)關(guān)系式.
(2)小明從批發(fā)市場(chǎng)共購(gòu)進(jìn)多少千克西瓜?
(3)小明這次賣瓜賺了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),拋物線W1:y=﹣x2+4x與x軸的正半軸交于點(diǎn)B,頂點(diǎn)為A,拋物線W2與W1關(guān)于x軸對(duì)稱,頂點(diǎn)為D.
(1)求拋物線W2的解析式;
(2)將拋物線W2向右平移m個(gè)單位,點(diǎn)D的對(duì)應(yīng)點(diǎn)為D′,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,則當(dāng)m為何值時(shí),四邊形AOD′B′為矩形?請(qǐng)直接寫出m的值.
(3)在(2)的條件下,將△AOD′沿x軸的正方向向右平移n個(gè)單位(0<n<5),得到△A′O′D′′,AD′分別與O′A′、O′D′′交于點(diǎn)M、點(diǎn)P,A′D′′分別與AB′、B′D′交于點(diǎn)N、點(diǎn)Q.
①求當(dāng)n為何值時(shí),四邊形MNQP為菱形?
②若四邊形MNQP的面積為S,求S關(guān)于n的函數(shù)關(guān)系式;并求當(dāng)n為何值時(shí),S的值最大?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別交于,兩點(diǎn),且經(jīng)過點(diǎn).
(1)求的值;
(2)若,
①求的值;
②點(diǎn)為軸上一動(dòng)點(diǎn),點(diǎn)為坐標(biāo)平面內(nèi)另一點(diǎn),若以,,,為頂點(diǎn)的四邊形是菱形,請(qǐng)直接寫出所有符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,如果AC=12、BD=10、AB=m,那么m的取值范圍是( 。
A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠BDC=∠A;
(2)若CE=2,DE=1,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“父親節(jié)”的臨近,某商場(chǎng)決定開展“感恩父愛,回饋顧客”的促銷活動(dòng),對(duì)部分節(jié)日大禮包進(jìn)行打折銷售.其中款節(jié)日大禮包打折款節(jié)日大禮包打折.已知打折前,購(gòu)買盒款節(jié)日大禮包和盒款節(jié)日大禮包需要元;打折后買盒款節(jié)日大禮包和盒款節(jié)日大禮包需要元.
求打折后兩款節(jié)日大禮包每盒分別為多少元?
打折期間,某公司計(jì)劃為員工采購(gòu)盒節(jié)日大禮包,總費(fèi)用不超過元,則最多可以購(gòu)買款節(jié)日大禮包多少盒?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com