【題目】已知Rt△OAB,∠OAB=90o,∠ABO=30o,斜邊OB=4,將Rt△OAB繞點(diǎn)O順時針旋轉(zhuǎn)60o,如圖1,連接BC.
(1)ΔOBC的形狀是 ;
(2)如圖1,連接AC,作OP⊥AC,垂足為P,求OP的長度;
(3)如圖2,點(diǎn)M、N同時從點(diǎn)O出發(fā),在△OCB邊上運(yùn)動,M沿O→C→B路徑勻速運(yùn)動,N沿O→B→C路徑勻速運(yùn)動,當(dāng)兩點(diǎn)相遇時運(yùn)動停止.已知點(diǎn)M的運(yùn)動速度為1.5單位/秒,點(diǎn)N的運(yùn)動速度為1單位/秒.設(shè)運(yùn)動時間為x秒,△OMN的面積為y,求當(dāng)x為何值時y取得最大值?最大值為多少?(結(jié)果可保留根號) .
【答案】(1)等邊三角形;(2) ;(3) 時,y有最大值,
【解析】
(1)根據(jù)有一個角為60o的等腰三角形為等邊三角形便可判斷.
(2)先計算出OA、AB長度,利用面積法便可求出OP.
(3)分三種情況討論,當(dāng)0<x≤時,點(diǎn)N作NE⊥OC,計算NE,便可找到面積的最值;當(dāng)<x≤4時,作MH⊥OB于H.計算BM=8﹣1.5x,MH的值,便可找到面積的最值;當(dāng)<x≤4時,作OG⊥BC于G.MN=12﹣2.5x,OG的值,便可計算面積最值.
(1)等邊三角形
Rt△OAB繞點(diǎn)O順時針旋轉(zhuǎn)60o
∴OB=OC ∠BOC=60°
∴ΔOBC的形狀為等邊三角形.
(2)∵OB=4,∠ABO=30°,∴OA= OB=2,AB= OA=2,
∴S△AOC= OAAB=×2×2=2,
∵△BOC是等邊三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,
∴AC= =2,∴OP= .
(3)①當(dāng)0<x≤時,M在OC上運(yùn)動,N在OB上運(yùn)動,此時過點(diǎn)N作NE⊥OC且交OC于點(diǎn)E.則NE=ONsin60°= ,∴S△OMN= OMNE= ×1.5·,∴.
∴ 時,y有最大值,.
②當(dāng)<x≤4時,M在BC上運(yùn)動,N在OB上運(yùn)動.
作MH⊥OB于H.則BM=8﹣1.5x,MH=BMsin60°= ,
∴y= ×ON·MH=.當(dāng)時,y取最大值,,
③當(dāng)4<x≤4.8時,M、N都在BC上運(yùn)動,作OG⊥BC于G.
MN=12﹣2.5x,OG=AB=2,∴y= MNOG=12 ,
當(dāng)x=4時,y有最大值,,綜上所述,y有最大值,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列18×7的網(wǎng)格中,橫、縱坐標(biāo)均為整數(shù)的點(diǎn)叫做格點(diǎn),例如A(﹣8,0)、B(﹣4.3)都是格點(diǎn).
(1)直接寫出△ABO的形狀:
(2)要求在圖中僅用無刻的直尺畫圖:將△ABO繞點(diǎn)O順時針旋轉(zhuǎn)得△DEO,且點(diǎn)B的對應(yīng)點(diǎn)E落在x軸正半軸上.
操作如下:
第一步:在x正半軸上找一個格點(diǎn)E,使OE=OB;
第二步:找一個格點(diǎn)F,使∠EOF=∠AOB;
第三步:找一個格點(diǎn)M,作直線AM交直線OF于D,連DE,則△DEO即為所作出的圖形.請你按以上操作完成畫圖.并直接寫出點(diǎn)E,F,M三點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線與軸兩個交點(diǎn)間的距離為2,稱此拋物線為定弦拋物線,已知某定弦拋物線的對稱軸為直線,將此拋物線向左平移2個單位,再向下平移3個單位,得到的拋物線過點(diǎn)( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)為點(diǎn),與軸分別交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).
(1)直接寫出點(diǎn)的坐標(biāo)為________;
(2)如圖,若、兩點(diǎn)在原點(diǎn)的兩側(cè),且,四邊形為正方形,其中頂點(diǎn)、在軸上,、位于拋物線上,求點(diǎn)的坐標(biāo);
(3)若線段,點(diǎn)為反比例函數(shù)與拋物線在第一象限內(nèi)的交點(diǎn),設(shè)的橫坐標(biāo)為,當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為“智慧三角形”.如圖,在平面直角坐標(biāo)系中,矩形的邊,點(diǎn),在邊存在點(diǎn),使得為“智慧三角形”,則點(diǎn)的坐標(biāo)為:______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與雙曲線只有一個交點(diǎn)A(1,2),且與x軸、y軸分別交于B、C兩點(diǎn),AD垂直平分OB,垂足為D,
求:(1)直線、雙曲線的解析式.
(2)線段BC的長;
(3)三角形BOC的內(nèi)心到三邊的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上,如圖2,△ABC以點(diǎn)A為旋轉(zhuǎn)中心順時針旋轉(zhuǎn).
(1)證明:BE=CD
(2)當(dāng)AC=ED時,探究在△ABC旋轉(zhuǎn)的過程中,是否存在這樣的旋轉(zhuǎn)角α,使以A、B、C、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,求出角α的度數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以任意△ABC的邊AB和AC向形外作等腰Rt△ABD和等腰Rt△ACE,F、G分別是線段BD和CE的中點(diǎn),則的值等于( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com