如圖,利用四邊形的不穩(wěn)定性改變矩形ABCD的形狀,得到□A1BCD1,若□A1BCD1的面積是矩形ABCD面積的一半,則∠ABA1的度數(shù)是

[  ]
A.

15°

B.

30°

C.

45°

D.

60°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網閱讀材料:如圖1,△ABC的周長為l,面積為S,內切圓O的半徑為r,探究r與S、l之間的關系.連接OA,OB,OC∵S=S△OAB+S△OBC+S△OCA
又∵S△OAB=
1
2
AB•r
,S△OBC=
1
2
BC•r
S△OCA=
1
2
CA•r

S=
1
2
AB•r+
1
2
BC•r+
1
2
CA•r=
1
2
l•r

r=
2S
l

解決問題:
(1)利用探究的結論,計算邊長分別為5,12,13的三角形內切圓半徑;
(2)若四邊形ABCD存在內切圓(與各邊都相切的圓),如圖2且面積為S,各邊長分別為a,b,c,d,試推導四邊形的內切圓半徑公式;
(3)若一個n邊形(n為不小于3的整數(shù))存在內切圓,且面積為S,各邊長分別為a1,a2,a3,…,an,合理猜想其內切圓半徑公式(不需說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•朝陽)如圖(3)是利用四邊形的不穩(wěn)定性制造的一個移動升降裝修平臺,其基本圖形是菱形,主體部分相當于由6個菱形相互連接而成,通過改變菱形的角度,從而可改變裝修平臺高度.
(1)如圖(1)是一個基本圖形,已知AB=1米,當∠ABC為30°時,求AC的長及此時整個裝修平臺的高度(裝修平臺的基腳高度忽略不計);
(2)當∠ABC從30°變?yōu)?0°(如圖(2)是一個基本圖形變化后的圖形)時,求整個裝修平臺升高了多少米.
[結果精確到0.1米,參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,
2
≈1.41].

查看答案和解析>>

科目:初中數(shù)學 來源:遼寧省朝陽市2011年初中畢業(yè)升學考試數(shù)學試卷 題型:044

如圖是利用四邊形的不穩(wěn)定性制造的一個移動升降裝修平臺,其基本圖形是菱形,主體部分相當于由6個菱形相互連接而成,通過改變菱形的角度,從而可改變裝修平臺高度.

(1)如圖是一個基本圖形,已知AB=1米,當∠ABC為30°時,求AC的長及此時整個裝修平臺的高度(裝修平臺的基腳高度忽略不計);

(2)當∠ABC從30°變?yōu)?0°(如圖是一個基本圖形變化后的圖形)時,求整個裝修平臺升高了多少米.

[結果精確到0.1米,參考數(shù)據(jù):sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.41]

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省太倉市七年級期中考試數(shù)學卷(帶解析) 題型:解答題

探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內角的和.那么,三角形的一個內角與它不相鄰的兩個外角的和之間存在何種數(shù)量關系呢?已知:如圖,∠FDC與∠ECD分別為△ADC的兩個外角,試探究∠A與∠FDC+∠ECD的數(shù)量關系.

探究二:三角形的一個內角與另兩個內角的平分線所夾的鈍角之間有何種關系?
已知:如圖,在△ADC中,DPCP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關系.

探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖,在四邊形ABCD中,DPCP分別平分∠ADC和∠BCD,試利用上述結論探究∠P與∠A+∠B的數(shù)量關系.

探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF呢?
請直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關系:_______________________________.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇省太倉市七年級下學期期中考試數(shù)學試卷(帶解析) 題型:解答題

探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內角的和.那么,三角形的一個內角與它不相鄰的兩個外角的和之間存在何種數(shù)量關系呢?
已知:如圖,∠FDC與∠ECD分別為△ADC的兩個外角,
試探究∠A與∠FDC+∠ECD的數(shù)量關系.

探究二:三角形的一個內角與另兩個內角的平分線所夾的鈍角之間有何種關系?
已知:如圖,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關系.

探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試利用上述結論探究∠P與∠A+∠B的數(shù)量關系.

探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF呢?
請直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關系: _______________________________.

查看答案和解析>>

同步練習冊答案