【題目】如圖,已知:點B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF.能否由上面的已知條件證明AB∥ED?如果能,請給出證明;如果不能,請從下列四個條件中選擇一個合適的條件,添加到已知條件中,使AB∥ED成立,并給出證明.
供選擇的四個條件(請從其中選擇一個):
①AB=ED; ②∠A=∠D=90°;
③∠ACB=∠DFE;④∠A=∠D.

【答案】解:不能;
選擇條件①AE=BE.
∵FB=CE,
∴FB+FC=CE+FC,
即BC=EF,
在△ABC和△DEF中
,
∴△ABC≌△DEF(SSS),
∴∠B=∠E,
∴AB∥ED.
【解析】只有FB=CE,AC=DF.不能證明AB∥ED;可添加:AB=ED,可用SSS證明△ABC≌△DEF.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=-x22xm+1交x軸于點A(a,0)和Bb,0),交y軸于點C,拋物線的頂點為D,下列四個判斷:①當x>0時,y>0;②若a=-1,則b=4;③拋物線上有兩點Px1,y1)和Qx2,y2),若x1<1< x2,且x1x2>2,則y1> y2;④點C關(guān)于拋物線對稱軸的對稱點為E,點G,F分別在x軸和y軸上,當m=2時,四邊形EDFG周長的最小值為.其中正確判斷的序號是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一副三角板的兩個直角頂點重合在一起.
(1)若∠EON=110°,求∠MOF的度數(shù);
(2)比較∠EOM與∠FON的大小,并寫出理由;
(3)求∠EON+∠MOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知m2﹣mn=2,mn﹣n2=5,則3m2+2mn﹣5n2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各數(shù):﹣(﹣2),(﹣2)2,﹣22,(﹣2)3,負數(shù)的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(  )

A. ﹣3(ab)=﹣3ab B. ﹣3(ab)=﹣3a+b

C. ﹣3(ab)=﹣3a﹣3b D. ﹣3(ab)=﹣3a+3b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,李老師出示了如下的題目:
“在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖,試確定線段AE與DB的大小關(guān)系,并說明理由”.
小敏與同桌小聰討論后,進行了如下解答:
(1)特殊情況,探索結(jié)論
當點E為AB的中點時,如圖1,確定線段AE與DB的大小關(guān)系,請你直接寫出結(jié)論:AEDB(填“>”,“<”或“=”).
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).理由如下:如圖2,過點E作EF∥BC,交AC于點F.(請你完成以下解答過程)
(3)拓展結(jié)論,設(shè)計新題
在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若△ABC的邊長為1,AE=2,CD= (請你直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:201902_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知代數(shù)式x﹣2y的值是﹣4,則代數(shù)式3﹣x+2y的值是_____

查看答案和解析>>

同步練習冊答案